Age of Information (AoI) is a newly appeared concept and metric to characterize the freshness of data. In this work, we study the delay and AoI in a multiple access channel (MAC) with two source nodes transmitting different types of data to a common destination. The first node is grid-connected and its data packets arrive in a bursty manner, and at each time slot it transmits one packet with some probability. Another energy harvesting (EH) sensor node generates a new status update with a certain probability whenever it is charged. We derive the delay of the grid-connected node and the AoI of the EH sensor as functions of different parameters in the system. The results show that the mutual interference has a non-trivial impact on the delay and age performance of the two nodes.
In this paper, we study the interplay between delay violation probability and average Age of Information (AoI) in a two-user wireless multiple access channel with multipacket reception (MPR) capability. We consider a system in which users have heterogeneous traffic characteristics: one has stringent delay constraints, while the other measures a source and transmits status updates in order to keep the AoI low. We show the effect of sensor sampling rate on the delay violation probability and that of the service rate of the delay-sensitive user on information freshness.
Timeliness is an emerging requirement for many Internet of Things (IoT) applications. In IoT networks, where a large-number of nodes are distributed, severe interference may incur during the transmission phase which causes age of information (AoI) degradation. It is therefore important to study the performance limit of AoI as well as how to achieve such limit. In this paper, we aim to optimize the AoI in random access Poisson networks. By taking into account the spatio-temporal interactions amongst the transmitters, an expression of the peak AoI is derived, based on explicit expressions of the optimal peak AoI and the corresponding optimal system parameters including the packet arrival rate and the channel access probability are further derived. It is shown that with a given packet arrival rate (resp. a given channel access probability), the optimal channel access probability (resp. the optimal packet arrival rate), is equal to one under a small node deployment density, and decrease monotonically as the spatial deployment density increases due to the severe interference caused by spatio-temproal coupling between transmitters. When joint tuning of the packet arrival rate and channel access probability is performed, the optimal channel access probability is always set to be one. Moreover, with the sole tuning of the channel access probability, it is found that the optimal peak AoI performance can be improved with a smaller packet arrival rate only when the node deployment density is high, which is contrast to the case of the sole tuning of the packet arrival rate, where a higher channel access probability always leads to better optimal peak AoI regardless of the node deployment density. In all the cases of optimal tuning of system parameters, the optimal peak AoI linearly grows with the node deployment density as opposed to an exponential growth with fixed system parameters.
The time average expected age of information (AoI) is studied for status updates sent over an error-prone channel from an energy-harvesting transmitter with a finite-capacity battery. Energy cost of sensing new status updates is taken into account as well as the transmission energy cost better capturing practical systems. The optimal scheduling policy is first studied under the hybrid automatic repeat request (HARQ) protocol when the channel and energy harvesting statistics are known, and the existence of a threshold-based optimal policy is shown. For the case of unknown environments, average-cost reinforcement-learning algorithms are proposed that learn the system parameters and the status update policy in real-time. The effectiveness of the proposed methods is demonstrated through numerical results.
We summarize recent contributions in the broad area of age of information (AoI). In particular, we describe the current state of the art in the design and optimization of low-latency cyberphysical systems and applications in which sources send time-stamped status updates to interested recipients. These applications desire status updates at the recipients to be as timely as possible; however, this is typically constrained by limited system resources. We describe AoI timeliness metrics and present general methods of AoI evaluation analysis that are applicable to a wide variety of sources and systems. Starting from elementary single-server queues, we apply these AoI methods to a range of increasingly complex systems, including energy harvesting sensors transmitting over noisy channels, parallel server systems, queueing networks, and various single-hop and multi-hop wireless networks. We also explore how update age is related to MMSE methods of sampling, estimation and control of stochastic processes. The paper concludes with a review of efforts to employ age optimization in cyberphysical applications.
We consider the age of information in a multicast network where there is a single source node that sends time-sensitive updates to $n$ receiver nodes. Each status update is one of two kinds: type I or type II. To study the age of information experienced by the receiver nodes for both types of updates, we consider two cases: update streams are generated by the source node at-will and update streams arrive exogenously to the source node. We show that using an earliest $k_1$ and $k_2$ transmission scheme for type I and type II updates, respectively, the age of information of both update streams at the receiver nodes can be made a constant independent of $n$. In particular, the source node transmits each type I update packet to the earliest $k_1$ and each type II update packet to the earliest $k_2$ of $n$ receiver nodes. We determine the optimum $k_1$ and $k_2$ stopping thresholds for arbitrary shifted exponential link delays to individually and jointly minimize the average age of both update streams and characterize the pareto optimal curve for the two ages.
Zheng Chen
,Nikolaos Pappas
,Emil Bjornson
.
(2019)
.
"Age of Information in a Multiple Access Channel with Heterogeneous Traffic and an Energy Harvesting Node"
.
Nikolaos Pappas
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا