We present a combination of ferromagnetic resonance (FMR) with spatially and time-resolved X-ray absorption spectroscopy in a scanning transmission X-ray microscope (STXM-FMR). The transverse high frequency component of the resonantly excited magnetization is measured with element-specifity in a Permalloy (Py) disk - Cobalt (Co) stripe bilayer microstructure. STXM-FMR mappings are snapshots of the local magnetization-precession with nm spatial resolution and ps temporal resolution. We directly observe the transfer of angular momentum from Py to Co and vice versa at their respective element-specific resonances. A third resonance could be observed in our experiments, which is identified as a coupled resonance of Py and Co.
We propose a theory for a type of apertureless scanning near field microscopy that is intended to allow the measurement of magnetism on a nanometer length scale. A scanning probe, for example a scanning tunneling microscope (STM) tip, is used to scan a magnetic substrate while a laser is focused on it. The electric field between the tip and substrate is enhanced in such a way that the circular polarization due to the Kerr effect, which is normally of order 0.1% is increased by up to two orders of magnitude for the case of a Ag or W tip and an Fe sample. Apart from this there is a large background of circular polarization which is non-magnetic in origin. This circular polarization is produced by light scattered from the STM tip and substrate. A detailed retarded calculation for this light-in-light-out experiment is presented.
Magnetic resonance imaging (MRI) has revolutionized biomedical science by providing non-invasive, three-dimensional biological imaging. However, spatial resolution in conventional MRI systems is limited to tens of microns, which is insufficient for imaging on molecular and atomic scales. Here we demonstrate an MRI technique that provides sub-nanometer spatial resolution in three dimensions, with single electron-spin sensitivity. Our imaging method works under ambient conditions and can measure ubiquitous dark spins, which constitute nearly all spin targets of interest and cannot otherwise be individually detected. In this technique, the magnetic quantum-projection noise of dark spins is measured using a single nitrogen-vacancy (NV) magnetometer located near the surface of a diamond chip. The spatial distribution of spins surrounding the NV magnetometer is imaged with a scanning magnetic-field gradient. To evaluate the performance of the NV-MRI technique, we image the three-dimensional landscape of dark electronic spins at and just below the diamond surface and achieve an unprecedented combination of resolution (0.8 nm laterally and 1.5 nm vertically) and single-spin sensitivity. Our measurements uncover previously unidentified electronic spins on the diamond surface, which can potentially be used as resources for improved magnetic imaging of samples proximal to the NV-diamond sensor. This three-dimensional NV-MRI technique is immediately applicable to diverse systems including imaging spin chains, readout of individual spin-based quantum bits, and determining the precise location of spin labels in biological systems.
Broadband FMR responses for metallic single-layer and bi-layer magnetic films with total thicknesses smaller than the microwave magnetic skin depth have been studied. Two different types of microwave transducers were used to excite and detect magnetization precession: a narrow coplanar waveguide and a wide microstrip line. Both transducers show efficient excitation of higher-order standing spin wave modes. The ratio of amplitudes of the first standing spin wave to the fundamental resonant mode is independent of frequency for single films. In contrast, we find a strong variation of the amplitudes with frequency for bi-layers and the ratio is strongly dependent on the ordering of layers with respect to a stripline transducer. Most importantly, cavity FMR measurements on the same samples show considerably weaker amplitudes for the standing spin waves. All experimental data are consistent with expected effects due to screening by eddy currents in films with thicknesses below the microwave magnetic skin depth. Finally, conditions for observing eddy current effects in different types of experiments are critically examined.
We propose an approach for super-resolution optical lithography which is based on the inverse of magnetic resonance imaging (MRI). The technique uses atomic coherence in an ensemble of spin systems whose final state population can be optically detected. In principle, our method is capable of producing arbitrary one and two dimensional high-resolution patterns with high contrast.
Being an antiferromagnetic topological insulator (AFM-TI), MnBi2Te4 offers an ideal platform to study the interplay between magnetism and topological order. We combine both transport and scanning microwave impedance microscopy (sMIM) to examine such interplay in atomically thin MnBi2Te4 with even-layer thickness. Transport measurement shows a quantized Hall resistivity under a magnetic field above 6 T signaling a Chern insulator phase, and a zero Hall plateau at low fields consistent with axion insulator phase. With sMIM, we directly visualize a magnetic-field-driven insulator-to-metal (IMT) transition of the bulk resulting from a quantum phase transition from a Chern insulator to axion insulator phase. Strikingly, sMIM reveals a persistent edge state across the transition. The observed edge state at low fields, in particular at zero field, calls for careful considerations for the topological nature of its bulk state. We discuss the possibility of having edge states in the context of axion insulator and beyond such a context. Our finding signifies the richness of topological phases in MnB2Te4 that has yet to be fully explored.
Thomas Feggeler
,Ralf Meckenstock
,Detlef Spoddig
.
(2019)
.
"Direct visualization of dynamic magnetic coupling in a Co/Py bilayer with picosecond and nanometer resolution"
.
Thomas Feggeler
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا