We propose a sliding surface for systems on the Lie group $SO(3)times mathbb{R}^3$ . The sliding surface is shown to be a Lie subgroup. The reduced-order dynamics along the sliding subgroup have an almost globally asymptotically stable equilibrium. The sliding surface is used to design a sliding-mode controller for the attitude control of rigid bodies. The closed-loop system is robust against matched disturbances and does not exhibit the undesired unwinding phenomenon.
A. Sannami constructed an example of the differentiable Cantor set embedded in the real line whose difference set has a positive measure. In this paper, we generalize the definition of the difference sets for sets of the two dimensional Euclidean space as the sets of vectors between two sets, and estimate their measures. For the quadratic map Q_c(z)=z^2+c, we obtain that the measure of the difference set of its Julia set vanishes if |c|>3+sqrt{3}.
We consider the complexity of the Independent Set Reconfiguration problem under the Token Sliding rule. In this problem we are given two independent sets of a graph and are asked if we can transform one to the other by repeatedly exchanging a vertex that is currently in the set with one of its neighbors, while maintaining the set independent. Our main result is to show that this problem is PSPACE-complete on split graphs (and hence also on chordal graphs), thus resolving an open problem in this area. We then go on to consider the $c$-Colorable Reconfiguration problem under the same rule, where the constraint is now to maintain the set $c$-colorable at all times. As one may expect, a simple modification of our reduction shows that this more general problem is PSPACE-complete for all fixed $cge 1$ on chordal graphs. Somewhat surprisingly, we show that the same cannot be said for split graphs: we give a polynomial time ($n^{O(c)}$) algorithm for all fixed values of $c$, except $c=1$, for which the problem is PSPACE-complete. We complement our algorithm with a lower bound showing that $c$-Colorable Reconfiguration is W[2]-hard on split graphs parameterized by $c$ and the length of the solution, as well as a tight ETH-based lower bound for both parameters.
Holographic models provide unique laboratories to investigate non-linear physics of transport in inhomogeneous systems. We provide a detailed account of both DC and AC conductivities in a defect CFT with spontaneous stripe order. The spatial symmetry is broken at large chemical potential and the resulting ground state is a combination of a spin and charge density wave. An infinitesimal applied electric field across the stripes will cause the stripes to slide over the underlying density of smeared impurities, a phenomenon which can be associated with the Goldstone mode for the spontaneously broken translation symmetry. We show that the presence of a spatially modulated background magnetization current thwarts the expression of some DC conductivities in terms of horizon data.
We study systems of coupled spin-gapped and gapless Luttinger liquids. First, we establish the existence of a sliding Luttinger liquid phase for a system of weakly coupled parallel quantum wires, with and without disorder. It is shown that the coupling can {it stabilize} a Luttinger liquid phase in the presence of disorder. We then extend our analysis to a system of crossed Luttinger liquids and establish the stability of a non-Fermi liquid state: the crossed sliding Luttinger liquid phase (CSLL). In this phase the system exhibits a finite-temperature, long-wavelength, isotropic electric conductivity that diverges as a power law in temperature $T$ as $T to 0$. This two-dimensional system has many properties of a true isotropic Luttinger liquid, though at zero temperature it becomes anisotropic. An extension of this model to a three-dimensional stack exhibits a much higher in-plane conductivity than the conductivity in a perpendicular direction.
We consider a small SO(2)-equivariant perturbation of a reaction-diffusion system on the sphere, which is equivariant with respect to the group SO(3) of all rigid rotations. We consider a normally hyperbolic SO(3)-group orbit of a rotating wave on the sphere that persists to a normally hyperbolic SO(2)-invariant manifold $M(epsilon)$. We investigate the effects of this forced symmetry breaking by studying the perturbed dynamics induced on $M(epsilon)$ by the above reaction-diffusion system. We prove that depending on the frequency vectors of the rotating waves that form the relative equilibrium SO(3)u_{0}, these rotating waves will give SO(2)-orbits of rotating waves or SO(2)-orbits of modulated rotating waves (if some transversality conditions hold). The orbital stability of these solutions is established as well. Our main tools are the orbit space reduction, Poincare map and implicit function theorem.