Do you want to publish a course? Click here

Results of Dark Matter Searches with the MACRO Experiment

131   0   0.0 ( 0 )
 Added by Ivan De Mitri
 Publication date 2002
  fields
and research's language is English
 Authors Ivan De Mitri




Ask ChatGPT about the research

The results of dark matter searches with the MACRO experiment are reported. In particular indirect searches for WIMPs and direct searches for supermassive GUT magnetic monopoles are reported together with massive neutrino studies through the measurement of the oscillation induced anomalies in the atmospheric neutrino flux.



rate research

Read More

Hidden photons are dark matter candidates motivated by theories beyond the standard model of particle physics. They mix with conventional photons, and they can be detected through the very weak electromagnetic radiation they induce at the interface between a metal and the air. SHUKET (SearcH for U(1) darK matter with an Electromagnetic Telescope) is a dedicated experiment sensitive to the hidden photon-induced signal. The results from a hidden photon search campaign are reported, with no significant detection of a dark matter signal. Exclusion limits are derived from the observed noise fluctuations in a 5 GHz to 6.8 GHz frequency range, corresponding to a hidden photon mass region ranging from 20.8 micro-eV to 28.3 micro-eV. SHUKET is currently the most sensitive instrument in this mass range and the obtained limits on the kinetic mixing term constrain significantly dark matter models inspired from string theory.
The PICASSO dark matter search experiment operated an array of 32 superheated droplet detectors containing 3.0 kg of C$_{4}$F$_{10}$ and collected an exposure of 231.4 kgd at SNOLAB between March 2012 and January 2014. We report on the final results of this experiment which includes for the first time the complete data set and improved analysis techniques including mbox{acoustic} localization to allow fiducialization and removal of higher activity regions within the detectors. No signal consistent with dark matter was observed. We set limits for spin-dependent interactions on protons of $sigma_p^{SD}$~=~1.32~$times$~10$^{-2}$~pb (90%~C.L.) at a WIMP mass of 20 GeV/c$^{2}$. In the spin-independent sector we exclude cross sections larger than $sigma_p^{SI}$~=~4.86~$times$~10$^{-5 }$~pb~(90% C.L.) in the region around 7 GeV/c$^{2}$. The pioneering efforts of the PICASSO experiment have paved the way forward for a next generation detector incorporating much of this technology and experience into larger mass bubble chambers.
113 - Hao Ma , Ze She , Zhongzhi Liu 2019
The China Dark Matter Experiment (CDEX), located at the China Jinping Underground Laboratory (CJPL) whose overburden is about 2400m rock, aims at direct searches of light Weakly Interacting Massive Particles (WIMPs). A single-element 994-gram p-type point contact (PPC) germanium detector (CDEX-1B) runs inside a solid passive shielding system. To achieve lower background, a prototype 10kg PPC germanium detector array (CDEX-10), consisting of three detector strings with three germanium crystals each, is directly immersed in the liquid nitrogen. With the energy threshold of 160eV, the limits on WIMP-nucleus scattering are set by energy spectra and annual modulation analysis, respectively. Incorporating Migdal effect, the data of CDEX-1B are re-analyzed to search sub-GeV WIMPs. Finally, the future plan of CDEX experiment in CJPL-II is introduced.
We discuss two complementary strategies to search for light dark matter (LDM) exploiting the positron beam possibly available in the future at Jefferson Laboratory. LDM is a new compelling hypothesis that identifies dark matter with new sub-GeV hidden sector states, neutral under standard model interactions and interacting with our world through a new force. Accelerator-based searches at the intensity frontier are uniquely suited to explore it. Thanks to the high intensity and the high energy of the CEBAF (Continuous Electron Beam Accelerator Facility) beam, and relying on a novel LDM production mechanism via positron annihilation on target atomic electrons, the proposed strategies will allow us to explore new regions in the LDM parameters space, thoroughly probing the LDM hypothesis as well as more general hidden sector scenarios.
We report on the first dark-matter (DM) search results from PandaX-I, a low threshold dual-phase xenon experiment operating at the China Jinping Underground Laboratory. In the 37-kg liquid xenon target with 17.4 live-days of exposure, no DM particle candidate event was found. This result sets a stringent limit for low-mass DM particles and disfavors the interpretation of previously-reported positive experimental results. The minimum upper limit, $3.7times10^{-44}$,cm$^2$, for the spin-independent isoscalar DM-particle-nucleon scattering cross section is obtained at a DM-particle mass of 49,GeV/c$^2$ at 90% confidence level.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا