Do you want to publish a course? Click here

Epitaxial growth and magnetic properties of Sr2CrReO6 thin films

463   0   0.0 ( 0 )
 Added by Stephan Gepraegs
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The double perovskite Sr2CrReO6 is an interesting material for spintronics, showing ferrimagnetism up to 635 K with a predicted high spin polarization of about 86%. We fabricated Sr2CrReO6 epitaxial films by pulsed laser deposition on (001)-oriented SrTiO3 substrates. Phase-pure films with optimum crystallographic and magnetic properties were obtained by growing at a substrate temperature of 700 degree C in pure O2 of 6.6x10-4 mbar. The films are c-axis oriented, coherently strained, and show less than 20% anti-site defects. The magnetization curves reveal high saturation magnetization of 0.8 muB per formula unit and high coercivity of 1.1 T, as well as a strong magnetic anisotropy.



rate research

Read More

The integration of ferromagnetic and ferroelectric materials into hybrid heterostructures yields multifunctional systems with improved or novel functionality. We here report on the structural, electronic and magnetic properties of the ferromagnetic double perovskite Sr2CrReO6, grown as epitaxial thin film onto ferroelectric BaTiO3. As a function of temperature, the crystal-structure of BaTiO3 undergoes phase transitions, which induce qualitative changes in the magnetic anisotropy of the ferromagnet. We observe abrupt changes in the coercive field of up to 1.2T along with resistance changes of up to 6.5%. These results are attributed to the high sensitivity of the double perovskites to mechanical deformation.
CaFe2O4 is a highly anisotropic antiferromagnet reported to display two spin arrangements with up-up-down-down (phase A) and up-down-up-down (phase B) configurations. The relative stability of these phases is ruled by the competing ferromagnetic and antiferromagnetic interactions between Fe3+ spins arranged in two different environments, but a complete understanding of the magnetic structure of this material does not exist yet. In this study we investigate epitaxial CaFe2O4 thin films grown on TiO2 (110) substrates by means of Pulsed Laser Deposition (PLD). Structural characterization reveals the coexistence of two out-of-plane crystal orientations and the formation of three in-plane oriented domains. The magnetic properties of the films, investigated macroscopically as well as locally, including highly sensitive Mossbauer spectroscopy, reveal the presence of just one order parameter showing long-range ordering below T = 185 K and the critical nature of the transition. In addition, a non-zero in-plane magnetization is found, consistent with the presence of uncompensated spins at phase or domain boundaries, as proposed for bulk samples.
We report the growth of thin films of the mixed valence compound YbAl$_{3}$ on MgO using molecular-beam epitaxy. Employing an aluminum buffer layer, epitaxial (001) films can be grown with sub-nm surface roughness. Using x-ray diffraction, in situ low-energy electron diffraction and aberration-corrected scanning transmission electron microscopy we establish that the films are ordered in the bulk as well as at the surface. Our films show a coherence temperature of 37 K, comparable to that reported for bulk single crystals. Photoelectron spectroscopy reveals contributions from both $textit{f}^{13}$ and $textit{f}^{12}$ final states establishing that YbAl$_{3}$ is a mixed valence compound and shows the presence of a Kondo Resonance peak near the Fermi-level.
Recently, nanolaminated ternary carbides have attracted immense interest due to the concomitant presence of both ceramic and metallic properties. Here, we grow nanolaminate Ti3AlC2 thin films by pulsed laser deposition on c-axis-oriented sapphire substrates and, surprisingly, the films are found to be highly oriented along the (103) axis normal to the film plane, rather than the (000l) orientation. Multiple characterization techniques are employed to explore the structural and chemical quality of these films, the electrical and optical properties, and the device functionalities. The 80-nm thick Ti3AlC2 film is highly conducting at room temperature (resistivity of 50 micro ohm-cm), and a very-low-temperature coefficient of resistivity. The ultrathin (2 nm) Ti3AlC2 film has fairly good optical transparency and high conductivity at room temperature (sheet resistance of 735 ohm). Scanning tunneling microscopy reveals the metallic characteristics (with finite density of states at the Fermi level) at room temperature. The metal-semiconductor junction of the p-type Ti3AlC2 film and n-Si show the expected rectification (diode) characteristics, in contrast to the ohmic contact behavior in the case of Ti3AlC2 on p-Si. A triboelectric-nanogenerator-based touch-sensing device, comprising of the Ti3AlC2 film, shows a very impressive peak-to-peak open-circuit output voltage of 80 V. These observations reveal that pulsed laser deposited Ti3AlC2 thin films have excellent potential for applications in multiple domains, such as bottom electrodes, resistors for high-precision measurements, Schottky diodes, ohmic contacts, fairly transparent ultrathin conductors, and next-generation biomechanical touch sensors for energy harvesting.
201 - H. Bea , M. Bibes , A. Barthelemy 2005
We have explored the influence of deposition pressure and temperature on the growth of BiFeO3 thin films by pulsed laser deposition onto (001)-oriented SrTiO3 substrates. Single-phase BiFeO3 films are obtained in a region close to 10-2 mbar and 580C. In non-optimal conditions, X-ray diffraction reveals the presence of Fe oxides or of Bi2O3. We address the influence of these parasitic phases on the magnetic and electrical properties of the films and show that films with Fe2O3 systematically exhibit a ferromagnetic behaviour, while single-phase films have a low bulk-like magnetic moment. Conductive-tip atomic force microscopy mappings also indicate that Bi2O3 conductive outgrowths create shortcuts through the BiFeO3 films, thus preventing their practical use as ferroelectric elements in functional heterostructures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا