Do you want to publish a course? Click here

CariGAN: Caricature Generation through Weakly Paired Adversarial Learning

87   0   0.0 ( 0 )
 Added by Wenbin Li
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Caricature generation is an interesting yet challenging task. The primary goal is to generate plausible caricatures with reasonable exaggerations given face images. Conventional caricature generation approaches mainly use low-level geometric transformations such as image warping to generate exaggerated images, which lack richness and diversity in terms of content and style. The recent progress in generative adversarial networks (GANs) makes it possible to learn an image-to-image transformation from data, so that richer contents and styles can be generated. However, directly applying the GAN-based models to this task leads to unsatisfactory results because there is a large variance in the caricature distribution. Moreover, some models require strictly paired training data which largely limits their usage scenarios. In this paper, we propose CariGAN overcome these problems. Instead of training on paired data, CariGAN learns transformations only from weakly paired images. Specifically, to enforce reasonable exaggeration and facial deformation, facial landmarks are adopted as an additional condition to constrain the generated image. Furthermore, an attention mechanism is introduced to encourage our model to focus on the key facial parts so that more vivid details in these regions can be generated. Finally, a Diversity Loss is proposed to encourage the model to produce diverse results to help alleviate the `mode collapse problem of the conventional GAN-based models. Extensive experiments on a new large-scale `WebCaricature dataset show that the proposed CariGAN can generate more plausible caricatures with larger diversity compared with the state-of-the-art models.



rate research

Read More

A caricature is an artistic form of a persons picture in which certain striking characteristics are abstracted or exaggerated in order to create a humor or sarcasm effect. For numerous caricature related applications such as attribute recognition and caricature editing, face parsing is an essential pre-processing step that provides a complete facial structure understanding. However, current state-of-the-art face parsing methods require large amounts of labeled data on the pixel-level and such process for caricature is tedious and labor-intensive. For real photos, there are numerous labeled datasets for face parsing. Thus, we formulate caricature face parsing as a domain adaptation problem, where real photos play the role of the source domain, adapting to the target caricatures. Specifically, we first leverage a spatial transformer based network to enable shape domain shifts. A feed-forward style transfer network is then utilized to capture texture-level domain gaps. With these two steps, we synthesize face caricatures from real photos, and thus we can use parsing ground truths of the original photos to learn the parsing model. Experimental results on the synthetic and real caricatures demonstrate the effectiveness of the proposed domain adaptation algorithm. Code is available at: https://github.com/ZJULearning/CariFaceParsing .
Supervised learning algorithms trained on medical images will often fail to generalize across changes in acquisition parameters. Recent work in domain adaptation addresses this challenge and successfully leverages labeled data in a source domain to perform well on an unlabeled target domain. Inspired by recent work in semi-supervised learning we introduce a novel method to adapt from one source domain to $n$ target domains (as long as there is paired data covering all domains). Our multi-domain adaptation method utilises a consistency loss combined with adversarial learning. We provide results on white matter lesion hyperintensity segmentation from brain MRIs using the MICCAI 2017 challenge data as the source domain and two target domains. The proposed method significantly outperforms other domain adaptation baselines.
We present a caricature generation framework based on shape and style manipulation using StyleGAN. Our framework, dubbed StyleCariGAN, automatically creates a realistic and detailed caricature from an input photo with optional controls on shape exaggeration degree and color stylization type. The key component of our method is shape exaggeration blocks that are used for modulating coarse layer feature maps of StyleGAN to produce desirable caricature shape exaggerations. We first build a layer-mixed StyleGAN for photo-to-caricature style conversion by swapping fine layers of the StyleGAN for photos to the corresponding layers of the StyleGAN trained to generate caricatures. Given an input photo, the layer-mixed model produces detailed color stylization for a caricature but without shape exaggerations. We then append shape exaggeration blocks to the coarse layers of the layer-mixed model and train the blocks to create shape exaggerations while preserving the characteristic appearances of the input. Experimental results show that our StyleCariGAN generates realistic and detailed caricatures compared to the current state-of-the-art methods. We demonstrate StyleCariGAN also supports other StyleGAN-based image manipulations, such as facial expression control.
This inherent relations among multiple face analysis tasks, such as landmark detection, head pose estimation, gender recognition and face attribute estimation are crucial to boost the performance of each task, but have not been thoroughly explored since typically these multiple face analysis tasks are handled as separate tasks. In this paper, we propose a novel deep multi-task adversarial learning method to localize facial landmark, estimate head pose and recognize gender jointly or estimate multiple face attributes simultaneously through exploring their dependencies from both image representation-level and label-level. Specifically, the proposed method consists of a deep recognition network R and a discriminator D. The deep recognition network is used to learn the shared middle-level image representation and conducts multiple face analysis tasks simultaneously. Through multi-task learning mechanism, the recognition network explores the dependencies among multiple face analysis tasks, such as facial landmark localization, head pose estimation, gender recognition and face attribute estimation from image representation-level. The discriminator is introduced to enforce the distribution of the multiple face analysis tasks to converge to that inherent in the ground-truth labels. During training, the recognizer tries to confuse the discriminator, while the discriminator competes with the recognizer through distinguishing the predicted label combination from the ground-truth one. Though adversarial learning, we explore the dependencies among multiple face analysis tasks from label-level. Experimental results on four benchmark databases, i.e., the AFLW database, the Multi-PIE database, the CelebA database and the LFWA database, demonstrate the effectiveness of the proposed method for multiple face analyses.
Caricature is an artistic drawing created to abstract or exaggerate facial features of a person. Rendering visually pleasing caricatures is a difficult task that requires professional skills, and thus it is of great interest to design a method to automatically generate such drawings. To deal with large shape changes, we propose an algorithm based on a semantic shape transform to produce diverse and plausible shape exaggerations. Specifically, we predict pixel-wise semantic correspondences and perform image warping on the input photo to achieve dense shape transformation. We show that the proposed framework is able to render visually pleasing shape exaggerations while maintaining their facial structures. In addition, our model allows users to manipulate the shape via the semantic map. We demonstrate the effectiveness of our approach on a large photograph-caricature benchmark dataset with comparisons to the state-of-the-art methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا