No Arabic abstract
CeRhIn$_{5}$ is a Kondo-lattice prototype in which a magnetic field B$bf{^{ast}simeq}$ 30 T induces an abrupt Fermi-surface (FS) reconstruction and pronounced in-plane electrical transport anisotropy all within its antiferromagnetic state. Though the antiferromagnetic order at zero field is well-understood, the origin of an emergent state at B$^{ast}$ remains unknown due to challenges inherent to probing states microscopically at high fields. Here, we report low-temperature Nuclear Magnetic Resonance (NMR) measurements revealing a discontinuous decrease in the $^{115}$In formal Knight shift, without changes in crystal or magnetic structures, of CeRhIn$_{5}$ at fields spanning B$^{ast}$. We show that the emergent state above B$^{ast}$ results from a change in Ces 4f orbitals that arises from field-induced evolution of crystal-electric field (CEF) energy levels. This change in orbital character enhances hybridisation between the 4f and the conduction electrons (c.e.) that leads ultimately to an itinerant quantum-critical point at B$bf{_{c0} simeq}$ 50 T.
Synergic effect of electronic correlation and spin-orbit coupling is an emerging topic in topological materials. Central to this rapidly developing area are the prototypes of strongly correlated heavy-fermion systems. Recently, some Ce-based compounds are proposed to host intriguing topological nature, among which the electronic properties of CeSb are still under debate. In this paper, we report a comprehensive study combining magnetic and electronic transport measurements, and electronic band structure calculations of this compound to identify its topological nature. Quantum oscillations are clearly observed in both magnetization and magnetoresistance at high fields, from which one pocket with a nontrivial Berry phase is recognized. Angular-dependent magnetoresistance shows that this pocket is elongated in nature and corresponds to the electron pocket as observed in LaBi. Nontrivial electronic structure of CeSb is further confirmed by first-principle calculations, which arises from spin splitting in the fully polarized ferromagnetic state. These features indicate that magnetic-field can induce nontrivial topological electronic states in this prototypical Kondo semimetal.
The nature of superconductivity in heavy-fermion materials is a subject under intense debate, and controlling this many-body state is central for its eventual understanding. Here, we examine how proximity effects may change this phenomenon, by investigating the effects of an additional metallic layer on the top of a Kondo-lattice, and allowing for pairing in the former. We analyze a bilayer Kondo Lattice Model with an on-site Hubbard interaction, $-U$, on the additional layer, using a mean-field approach. For $U=0$, we notice a drastic change in the density-of-states due to multiple-orbital singlet resonating combinations. It destroys the well-known Kondo insulator at half filling, leading to a metallic ground state, which, in turn, enhances antiferromagnetism through the polarization of the conduction electrons. For $U eq 0$, a superconducting Kondo state sets in at zero temperature, with the occurrence of unconventional pairing amplitudes involving $f$-electrons. We establish that this remarkable feature is only possible due to the proximity effects of the additional layer. At finite temperatures we find that the critical superconducting temperature, $T_c$, decreases with the interlayer hybridization. We have also established that a zero temperature superconducting amplitude tracks $T_c$, which reminisces the BCS proportionality between the superconducting gap and $T_c$.
We report neutron scattering experiments performed to investigate the dynamic magnetic properties of the Kondo-lattice compound YbNi2B2C. The spectrum of magnetic excitations is found to be broad, extending up to at least 150 meV, and contains inelastic peaks centred near 18 meV and 43 meV. At low energies we observe quasielastic scattering with a width Gamma = 2.1 meV. The results suggest a Yb3+ ground state with predominantly localized 4f electrons subject to (i) a crystalline electric field (CEF) potential, and (ii) a Kondo interaction, which at low temperatures is about an order of magnitude smaller than the CEF interaction. From an analysis of the dynamic magnetic response we conclude that the crystalline electric field acting on the Yb ions has a similar anisotropy to that in other RNi2B2C compounds, but is uniformly enhanced by almost a factor of 2. The static and dynamic magnetic properties of YbNi2B2C are found to be reconciled quite well by means of an approximation scheme to the Anderson impurity model, and this procedure also indicates that the effective Kondo interaction varies with temperature due to the crystal field splitting. We discuss the nature of the correlated-electron ground state of YbNi2B2C based on these and other experimental results, and suggest that this compound might be close to a quantum critical point on the non-magnetic side.
A significant number of Kondo-lattice ferromagnets order perpendicular to the easy magnetization axis dictated by the crystalline electric field. The nature of this phenomenon has attracted considerable attention, but remains poorly understood. In the present paper we use inelastic neutron scattering supported by magnetization and specific heat measurements to study the spin dynamics in the hard-axis ferromagnet CeAgSb2. In the zero field state we observed two sharp magnon modes, which are associated with Ce ordering and extended up to $approx 3 meV with a considerable spin gap of 0.6 meV. Application of a magnetic field perpendicular to the moment direction reduces the spectral intensity and suppresses the gap and significantly enhances the low-temperature specific heat at a critical field of Bc ~ 2.8 T via a mean-field-like transition. Above the transition, in the field polarized state, the gap eventually reopens due to the Zeeman effect. We modeled the observed dispersion using linear spin-wave theory (LSWT) taking into account the ground state Gamma 6 doublet and exchange anisotropy. Our model correctly captures the essential features of the spin dynamics including magnetic dispersion, distribution of the spectral intensity as well as the field-induced behavior, although several minor features remain obscure. The observed spectra do not show significant broadening due to the finite lifetime of the quasiparticles. Along with a moderate electronic specific heat coefficient gamma = 46 mJ/mol K2 this indicates that the Kondo coupling is relatively weak and the Ce moments are well localized. Altogether, our results provide profound insight into the spin dynamics of the hard-axis ferromagnet CeAgSb2 and can be used as solid ground for studying magnetic interactions in isostructural compounds including CeAuSb2, which exhibits nematicity and unusual mesoscale magnetic textures.
Recent experiments have examined the impact of a magnetic field on ferroquadrupolar orders in the intermetallic Kondo material PrTi$_2$Al$_{20}$. Motivated by this, we use extensive Monte Carlo simulations to study a diamond lattice XY model of non-Kramers pseudospin-$1/2$ Pr$^{3+}$ moments which crucially incorporates three-spin interactions. This model supports a thermal $Z_3$ Potts ordering transition upon cooling from the paramagnetic phase into the ferroquadrupolar phase. An applied magnetic field along the [110] direction leads to a thermal Ising transition out of the quadrupolar ordered phase. A magnetic field along the [001] direction leads to only thermal crossovers, but supports a spinodal transition out of metastable domains which could be strongly pinned by coupling to elastic lattice deformations. We propose noise measurements as a potential probe to hear the spinodal transition. Our work highlights the importance of multispin interactions in Kondo materials near the small-to-large Fermi surface transition.