Do you want to publish a course? Click here

Designing Magnetic Topological van der Waals Heterostructure

91   0   0.0 ( 0 )
 Added by Anh Pham
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate a new method of designing 2D functional magnetic topological heterostructure (HS) by exploiting the vdw heterostructure (vdw-HS) through combining 2D magnet CrI$_3$ and 2D materials (Ge/Sb) to realize new 2D topological system with nonzero Chern number (C=1) and chiral edge state. The nontrivial topology originates primarily from the CrI$_3$ layer while the non-magnetic element induces the charge transfer process and proximity enhanced spin-orbit coupling. Due to these unique properties, our topological magnetic vdw-HS overcomes the weak magnetization via proximity effect in previous designs since the magnetization and topology coexist in the same magnetic layer. Specifically, our systems of bilayer CrI$_3$/Sb and trilayer CrI$_3$/Sb/CrI$_3$ exhibit different topological ground state ranging from antiferromagnetic topological crystalline insulator (C$_M$= 2) to a QAHE. These nontrivial topological transition is shown to be switchable in a trilayer configuration due to the magnetic switching from antiferromagnetism to ferromangetism in the presence an external perpendicular electric field with value as small as 0.05 eV/A. Thus our study proposes a realistic system to design switchable magnetic topological device with electric field.

rate research

Read More

When two superconductors are connected across a ferromagnet, the spin configuration of the transferred Cooper pairs can be modulated due to magnetic exchange interaction. The resulting supercurrent can reverse its sign across the Josephson junction (JJ) [1-4]. Here we demonstrate Josephson phase modulation in van der Waals heterostructures when Cooper pairs from superconducting NbSe$_2$ tunnel through atomically thin magnetic insulator (MI) Cr$_2$Ge$_2$Te$_6$. Employing a superconducting quantum interference device based on MI JJs, we probe a doubly degenerate non-trivial JJ phase ($phi$) originating from the magnetic barrier. This $phi$-phase JJ is formed by momentum conserving tunneling of Ising Cooper pairs [5] across magnetic domains in the Cr$_2$Ge$_2$Te$_6$ barrier. The doubly degenerate ground states in MI JJs provide a two-level quantum system that can be utilized as a new disipationless component for superconducting quantum devices, including phase batteries [6], memories [7,8], and quantum Ratchets [9,10].
The designer approach has become a new paradigm in accessing novel quantum phases of matter. Moreover, the realization of exotic states such as topological insulators, superconductors and quantum spin liquids often poses challenging or even contradictory demands for any single material. For example, it is presently unclear if topological superconductivity, which has been suggested as a key ingredient for topological quantum computing, exists at all in any naturally occurring material . This problem can be circumvented by using designer heterostructures combining different materials, where the desired physics emerges from the engineered interactions between the different components. Here, we employ the designer approach to demonstrate two major breakthroughs - the fabrication of van der Waals (vdW) heterostructures combining 2D ferromagnetism with superconductivity and the observation of 2D topological superconductivity. We use molecular-beam epitaxy (MBE) to grow two-dimensional islands of ferromagnetic chromium tribromide (CrBr$_3$) on superconducting niobium diselenide (NbSe$_2$) and show the signatures of one-dimensional Majorana edge modes using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). The fabricated two-dimensional vdW heterostructure provides a high-quality controllable platform that can be integrated in device structures harnessing topological superconductivity. Finally, layered heterostructures can be readily accessed by a large variety of external stimuli potentially allowing external control of 2D topological superconductivity through electrical, mechanical, chemical, or optical means.
151 - Zheng Liu , Yulei Han , Yafei Ren 2020
We identify a valley-polarized Chern insulator in the van der Waals heterostructure, Pt$_{2}$HgSe$_{3}$/CrI$_3$, for potential applications with interplay between electric, magnetic, optical, and mechanical effects. The interlayer proximity magnetic coupling nearly closes the band gap of Pt$_{2}$HgSe$_{3}$ and the strong intra-layer spin-orbit coupling further lifts the valley degeneracy by over 100 meV leading to positive and negative band gaps at opposite valleys. In the valley with negative gap, the interfacial Rashba spin-orbit coupling opens a topological band gap of 17.8 meV, which is enlarged to 30.8 meV by adding an $h$-BN layer. We find large orbital magnetization in Pt$_{2}$HgSe$_{3}$ layer that is much larger than spin, which can induce measurable optical Kerr effect. The valley polarization and Chern number are coupled to the magnetic order of the nearest neighboring CrI$_3$ layer, which is switchable by electric, magnetic, and mechanical means in experiments. The presence of $h$-BN protects the topological phase allowing the construction of superlattices with valley, spin, and layer degrees of freedoms.
The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, layered structures provide a new platform for the discovery of new physics and effects. Recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials offer new opportunities. Here we demonstrate the Dzyaloshinskii-Moriya interaction and Neel-type skyrmions are induced at the WTe2/Fe3GeTe2 interface. Fe3GeTe2 is a ferromagnetic material with strong perpendicular magnetic anisotropy. We demonstrate that the strong spin orbit interaction in 1T-WTe2 does induce a large interfacial Dzyaloshinskii-Moriya interaction at the interface with Fe3GeTe2 due to the inversion symmetry breaking to stabilize skyrmions. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Neel-type skyrmions along with aligned and stripe-like domain structure. This interfacial coupling induced Dzyaloshinskii-Moriya interaction is estimated to have a large energy of 1.0 mJ/m^2, which can stabilize the Neel-type skyrmions in this heterostructure. This work paves a path towards the skyrmionic devices based on van der Waals heterostructures.
Two-dimensional (2D) van der Waals (vdW) materials show a range of profound physical properties that can be tailored through their incorporation in heterostructures and manipulated with external forces. The recent discovery of long-range ferromagnetic order down to atomic layers provides an additional degree of freedom in engineering 2D materials and their heterostructure devices for spintronics, valleytronics and magnetic tunnel junction switches. Here, using direct imaging by cryo-Lorentz transmission electron microscopy we show that topologically nontrivial magnetic-spin states, skyrmionic bubbles, can be realized in exfoliated insulating 2D vdW Cr2Ge2Te6. Due to the competition between dipolar interactions and uniaxial magnetic anisotropy, hexagonally-packed nanoscale bubble lattices emerge by field cooling with magnetic field applied along the out-of-plane direction. Despite a range of topological spin textures in stripe domains arising due to pair formation and annihilation of Bloch lines, bubble lattices with single chirality are prevalent. Our observation of topologically-nontrivial homochiral skyrmionic bubbles in exfoliated vdW materials provides a new avenue for novel quantum states in atomically-thin insulators for magneto-electronic and quantum devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا