Do you want to publish a course? Click here

A comparative theoretical study on physical properties of synthesized AVO3 (A = Ba, Sr, Ca, Pb) perovskites

74   0   0.0 ( 0 )
 Added by Mirza Rubel
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we employ CASTEP based on DFT (density functional theory) calculations to investigate various physical properties of BaVO3, SrVO3, CaVO3 and PbVO3. The elastic constants, bulk modulus, Shear modulus, Youngs modulus, Pughs ratio, Poissons ratio, Vickers hardness, universal anisotropy index and Peierls stress are calculated to rationalize the mechanical behavior of the aforementioned compounds. The study of electronic band structure and density of states (DOS) reveal the strong evidence of metallic behavior for all the perovskites. The analysis of bonding properties exhibits the existence of covalent, ionic and metallic bonds. The optical properties of AVO3 have been carried out and are discussed in this paper as well. The analysis of phonon property implies the dynamical stability of BaVO3 but not for SrVO3, CaVO3 and PbVO3. The values of Debye temperature and minimum thermal conductivity imply that only PbVO3 compound has potential to be used as TBC material.

rate research

Read More

We report the existence of a two-dimensional electron system (2DES) at the (001) surface of CaTiO3. Using angle-resolved photoemission spectroscopy, we find a hybridization between the d_xz and d_yz orbitals, not observed in the 2DESs at the surfaces of other ATiO3 perovskites, e.g. SrTiO3 or BaTiO3. Based on a comparison of the 2DES properties in these three materials, we show how the electronic structure of the 2DES (bandwidth, orbital order and electron density) is coupled to different typical lattice distortions in perovskites. The orbital hybridization in orthorhombic CaTiO3 results from the rotation of the oxygen octahedra, which can also occur at the interface of oxide heterostructures to compensate strain. More generally, the control of the orbital order in 2DES by choosing different A-site cations in perovskites offers a new gateway towards 2DESs in oxide heterostructures beyond SrTiO3.
We present first-principles density functional theory (DFT) investigations of mechanical, thermodynamic and optical properties of synthesized inverse-perovskites Sc3InX (X = B, C, N). The elastic constants at zero pressure and temperature are calculated and the anisotropic behavior of the compounds is illustrated. All the three materials are shown to be brittle in nature. The computed Peierls stress, approximately 3 to 5 times larger than of a selection of MAX phases, show that dislocation movement may follow but with much reduced occurrences compared to these MAX phases. The Mulliken bonding population and charge density maps show stronger covalency between Sc and X atoms compared with Sc-Sc bond. The Vickers hardness values of Sc3InX are predicted to be between 3.03 and 3.88 GPa. The Fermi surfaces of Sc3InX contain both hole- and electron-like topology which changes as one replaces B with C or N. The bulk modulus, specific heats, thermal expansion coefficient, and Debye temperature are calculated as a function both temperature and pressure using the quasi-harmonic Debye model with phononic effects. The results so obtained are analysed in comparison to the characteristics of other related compounds. Moreover optical functions are calculated and discussed for the first time. The reflectivity is found to be high in the IR-UV regions up to ~ 10.7 eV (Sc3InB, Sc3InC) and 12.3 eV (Sc3InN), thus showing promise as good coating materials. Keywords: Sc3InX, Mechanical properties; Fermi surface; Quasi-harmonic Debye model; Thermodynamic properties; Optical properties
Electronic structures of Sr_2FeMoO_6 (SFMO) and Ba_2FeMoO_6 (BFMO) double perovskites have been investigated using the Fe 2p->3d resonant photoemission spectroscopy (PES) and the Cooper minimum in the Mo 4d photoionization cross section. The states close to the Fermi level are found to have strongly mixed Mo-Fe t_{2g} character, suggesting that the Fe valence is far from pure 3+. The Fe 2p_{3/2} XAS spectra indicate the mixed-valent Fe^{3+}-Fe^{2+} configurations, and the larger Fe^{2+} component for BFMO than for SFMO, suggesting a kind of double exchange interaction. The valence-band PES spectra reveal good agreement with the LSDA+U calculation.
Lattice dynamics and high pressure phase transitions in AWO4 (A = Ba, Sr, Ca and Pb) have been investigated using inelastic neutron scattering experiments, ab-initio density functional theory calculations and extensive molecular dynamics simulations. The vibrational modes that are internal to WO4 tetrahedra occur at the highest energies consistent with the relative stability of WO4 tetrahedra. The neutron data and the ab-initio calculations are found to be in excellent agreement. The neutron and structural data are used to develop and validate an interatomic potential model. The model is used for classical molecular dynamics simulations to study their response to high pressure. We have calculated the enthalpies of the scheelite and fergusonite phases as a function of pressure, which confirms that the scheelite to fergusonite transition is second order in nature. With increase in pressure, there is a gradual change in the AO8 polyhedra, while there is no apparent change in the WO4 tetrahedra. We found that that all the four tungstates amorphize at high pressure. This is in good agreement with available experimental observations which show amorphization at around 45 GPa in BaWO4 and 40 GPa in CaWO4. On amorphization, there is an abrupt increase in the coordination of the W atom while the bisdisphenoids around A atom are considerably distorted. The pair correlation functions of the various atom pairs corroborate these observations. Our observations aid in predicting the pressure of amorphization in SrWO4 and PbWO4, which have not been experimentally reported.
We investigated the possibility of superconductivity in monolayer hexagonal boron nitride (h-BN) doped using each group-1 (Li, Na, K) and group-2 (Be, Mg, Ca, Sr, Ba) atom via ab-initio calculations. Consequently, we reveal that Sr- and Ba-doped monolayer h-BN and Ca-doped monolayer h-BN with 3.5% tensile strain are energetically stable and become superconductors with Tc values of 5.83 K, 1.53 K, and 12.8 K, respectively, which are considerably higher than those of Ca-, Sr-, and Ba-doped graphene. In addition, the momentum-resolved electron-phonon coupling (EPC) constant shows that the scattering among intrinsic {pi} electrons around the {Gamma} point dominates Tc. The scattering process is mediated by the low-energy vibration of the adsorbate. Moreover, compared with graphene, the stronger adsorbate-substrate interaction and lower symmetry in h-BN are critical for enhancing EPC in doped h-BN.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا