Do you want to publish a course? Click here

Two-dimensional electron systems in ATiO3 perovskites (A = Ca, Ba, Sr): control of orbital hybridization and order

201   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the existence of a two-dimensional electron system (2DES) at the (001) surface of CaTiO3. Using angle-resolved photoemission spectroscopy, we find a hybridization between the d_xz and d_yz orbitals, not observed in the 2DESs at the surfaces of other ATiO3 perovskites, e.g. SrTiO3 or BaTiO3. Based on a comparison of the 2DES properties in these three materials, we show how the electronic structure of the 2DES (bandwidth, orbital order and electron density) is coupled to different typical lattice distortions in perovskites. The orbital hybridization in orthorhombic CaTiO3 results from the rotation of the oxygen octahedra, which can also occur at the interface of oxide heterostructures to compensate strain. More generally, the control of the orbital order in 2DES by choosing different A-site cations in perovskites offers a new gateway towards 2DESs in oxide heterostructures beyond SrTiO3.



rate research

Read More

In this paper, we employ CASTEP based on DFT (density functional theory) calculations to investigate various physical properties of BaVO3, SrVO3, CaVO3 and PbVO3. The elastic constants, bulk modulus, Shear modulus, Youngs modulus, Pughs ratio, Poissons ratio, Vickers hardness, universal anisotropy index and Peierls stress are calculated to rationalize the mechanical behavior of the aforementioned compounds. The study of electronic band structure and density of states (DOS) reveal the strong evidence of metallic behavior for all the perovskites. The analysis of bonding properties exhibits the existence of covalent, ionic and metallic bonds. The optical properties of AVO3 have been carried out and are discussed in this paper as well. The analysis of phonon property implies the dynamical stability of BaVO3 but not for SrVO3, CaVO3 and PbVO3. The values of Debye temperature and minimum thermal conductivity imply that only PbVO3 compound has potential to be used as TBC material.
We have successfully synthesized three quasi-2D geometrically frustrated magnetic compounds (alpha-MCr_2O_4, M=Ca, Sr, Ba) using the spark-plasma-sintering technique. All these members of the alpha-MCr_2O_4 family consist of the stacking planar triangular lattices of Cr$^{3+}$ spins (${rm S}=3/2$), separated by non-magnetic alkaline earth ions. Their corresponding magnetic susceptibility, specific heat, dielectric permittivity and ferroelectric polarization are systematically investigated. A long-range magnetic ordering arises below the N{e}el temperature (around 40K) in each member of the alpha-MCr_2O_4 family, which changes to the quasi-120degree proper-screw-type helical spin structure at low temperature. A very small but confirmed spontaneous electric polarization emerges concomitantly with this magnetic ordering. The direction of electric polarization is found within the basal triangular plane. The multiferroicity in alpha-MCr_2O_4 can not be explained within the frameworks of the magnetic exchange striction or the inverse Dzyaloshinskii-Moriya interaction. The observed results are more compatible with the newly proposed Arima mechanism that is associated the d-p hybridization between the ligand and transition metal ions, modified by the spin-orbit coupling. The evolution of multiferroic properties with the increasing inter-planar spacing (as M changes from Ca to Ba) reveals the importance of interlayer interaction in this new family of frustrated magnetic systems.
Electronic structures of Sr_2FeMoO_6 (SFMO) and Ba_2FeMoO_6 (BFMO) double perovskites have been investigated using the Fe 2p->3d resonant photoemission spectroscopy (PES) and the Cooper minimum in the Mo 4d photoionization cross section. The states close to the Fermi level are found to have strongly mixed Mo-Fe t_{2g} character, suggesting that the Fe valence is far from pure 3+. The Fe 2p_{3/2} XAS spectra indicate the mixed-valent Fe^{3+}-Fe^{2+} configurations, and the larger Fe^{2+} component for BFMO than for SFMO, suggesting a kind of double exchange interaction. The valence-band PES spectra reveal good agreement with the LSDA+U calculation.
In the ternary system Sr-Cu-Ge, a clathrate type-I phase, Sr8Cu5.3Ge40.7 (a = 1.06311(3), exists close to the Zintl limit in a small temperature interval. Sr8Cu5.3Ge40.7 decomposes eutectoidally on cooling at 730{deg}C into (Ge), SrGe2 and tau1-SrCu2-xGe2+x. Phase equilibria at 700{deg}C have been established for the Ge rich part and are characterized by the appearance of only one ternary compound, tau1-SrCu2-xGe2+x, which crystallizes with the ThCr2Si2 structure type and forms a homogeneity range up to x=0.4 (a = 0.42850(4), c = 1.0370(1) nm). Additionally, the extent of the clathrate type-I solid solution Ba8-xSrxCuyGe46-y (5.2 < y < 5.4) has been studied at various temperatures. The clathrate type-I crystal structure (space group ) has been proven by X-ray single crystal diffraction on two single crystals with composition Sr8Cu5.3Ge40.7 (a = 1.06368(2) nm) and Ba4.9Sr3.1Cu5.3Ge40.7 (a = 1.06748(2) nm) measured at 300, 200 and 100 K. From the temperature dependency of the lattice parameters and the atomic displacement parameters, the thermal expansion coefficients, the Debye- and Einstein-temperatures and the speed of sound have been determined. From heat capacity measurements of Sr8Cu5.3Ge40.7 at low temperatures, the Sommerfeld coefficient and the Debye temperature have been extracted, whereas from a detailed analysis of these data at higher temperatures, Einstein branches of the phonon dispersion relation have been derived and compared with those obtained from the atomic displacement parameters. Electrical resistivity measurements of Sr8Cu5.3Ge40.7 reveal a rather metallic behaviour in the low temperature range (< 300 K).
Lattice dynamics and high pressure phase transitions in AWO4 (A = Ba, Sr, Ca and Pb) have been investigated using inelastic neutron scattering experiments, ab-initio density functional theory calculations and extensive molecular dynamics simulations. The vibrational modes that are internal to WO4 tetrahedra occur at the highest energies consistent with the relative stability of WO4 tetrahedra. The neutron data and the ab-initio calculations are found to be in excellent agreement. The neutron and structural data are used to develop and validate an interatomic potential model. The model is used for classical molecular dynamics simulations to study their response to high pressure. We have calculated the enthalpies of the scheelite and fergusonite phases as a function of pressure, which confirms that the scheelite to fergusonite transition is second order in nature. With increase in pressure, there is a gradual change in the AO8 polyhedra, while there is no apparent change in the WO4 tetrahedra. We found that that all the four tungstates amorphize at high pressure. This is in good agreement with available experimental observations which show amorphization at around 45 GPa in BaWO4 and 40 GPa in CaWO4. On amorphization, there is an abrupt increase in the coordination of the W atom while the bisdisphenoids around A atom are considerably distorted. The pair correlation functions of the various atom pairs corroborate these observations. Our observations aid in predicting the pressure of amorphization in SrWO4 and PbWO4, which have not been experimentally reported.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا