No Arabic abstract
It is important to study the van der Waals interface in emerging vertical heterostructures based on layered two-dimensional (2D) materials. Being atomically thin, 2D materials are susceptible to significant strains as well as charge transfer doping across the interfaces. Here we use Raman and photoluminescence (PL) spectroscopy to study the interface between monolayer graphene/MoS2 heterostructures prepared by mechanical exfoliation and layer-by-layer transfer. By using correlation analysis between the Raman modes of graphene and MoS2 we show that both layers are subjected to compressive strain and charge transfer doping following mechanical exfoliation and thermal annealing. Furthermore, we show that both strain and carrier concentration can be modulated in the heterostructures with additional thermal annealing. Our study highlights the importance of considering both mechanical and electronic coupling when characterizing the interface in van der Waals heterostructures, and demonstrates a method to tune their electromechanical properties.
Van der Waals heterostructures have recently emerged as a new class of materials, where quantum coupling between stacked atomically thin two-dimensional (2D) layers, including graphene, hexagonal-boron nitride, and transition metal dichalcogenides (MX2), give rise to fascinating new phenomena. MX2 heterostructures are particularly exciting for novel optoelectronic and photovoltaic applications, because 2D MX2 monolayers can have an optical bandgap in the near-infrared to visible spectral range and exhibit extremely strong light-matter interactions. Theory predicts that many stacked MX2 heterostructures form type-II semiconductor heterojunctions that facilitate efficient electron-hole separation for light detection and harvesting. Here we report the first experimental observation of ultrafast charge transfer in photo-excited MoS2/WS2 heterostructures using both photoluminescence mapping and femtosecond (fs) pump-probe spectroscopy. We show that hole transfer from the MoS2 layer to the WS2 layer takes place within 50 fs after optical excitation, a remarkable rate for van der Waals coupled 2D layers. Such ultrafast charge transfer in van der Waals heterostructures can enable novel 2D devices for optoelectronics and light harvesting.
We present a joint theoretical and experimental investigation of charge doping and electronic potential landscapes in hybrid structures composed of graphene and semiconducting single layer MoS2. From first-principles simulations we find electron doping of graphene due to the presence of rhenium impurities in MoS2. Furthermore, we show that MoS2 edges give rise to charge reordering and a potential shift in graphene, which can be controlled through external gate voltages. The interplay of edge and impurity effects allows the use of the graphene-MoS2 hybrid as a photodetector. Spatially resolved photocurrent signals can be used to resolve potential gradients and local doping levels in the sample.
We use electron transport to characterize monolayer graphene - multilayer MoS2 heterostructures. Our samples show ambipolar characteristics and conductivity saturation on the electron branch which signals the onset of MoS2 conduction band population. Surprisingly, the carrier density in graphene decreases with gate bias once MoS2 is populated, demonstrating negative compressibility in MoS2. We are able to interpret our measurements quantitatively by accounting for disorder and using the random phase approximation (RPA) for the exchange and correlation energies of both Dirac and parabolic-band two-dimensional electron gases. This interpretation allows us to extract the energetic offset between the conduction band edge of MoS2 and the Dirac point of graphene.
Two-dimensional (2D) heterointerfaces often provide extraordinary carrier transport as exemplified by superconductivity or excitonic superfluidity. Recently, double-layer graphene separated by few-layered boron nitride demonstrated the Coulomb drag phenomenon: carriers in the active layer drag the carriers in the passive layer. Here, we propose a new switching device operating via Coulomb drag interaction at a graphene/MoS2 (GM) heterointerface. The ideal van der Waals distance allows strong coupling of the interlayer electron-hole pairs, whose recombination is prevented by the Schottky barrier formed due to charge transfer at the heterointerface. This device exhibits a high carrier mobility (up to ~3,700 cm^2V^-1s^-1) even at room temperature, while maintaining a high on/off current ratio (~10^8), outperforming those of individual layers. In the electron-electron drag regime, graphene-like Shubnikov-de Haas oscillations are observed at low temperatures. Our Coulomb drag transistor could provide a shortcut for the practical application of quantum-mechanical 2D heterostructures at room temperature.
Multilayer van der Waals (vdWs) heterostructures assembled by diverse atomically thin layers have demonstrated a wide range of fascinating phenomena and novel applications. Understanding the interlayer coupling and its correlation effect is paramount for designing novel vdWs heterostructures with desirable physical properties. Using a detailed theoretical study of 2D MoS2-graphene (GR)-based heterostructures based on state-of-the-art hybrid density functional theory, we reveal that for 2D few-layer heterostructures, vdWs forces between neighboring layers depend on the number of layers. Compared to that in bilayer, the interlayer coupling in trilayer vdW heterostructures can significantly be enhanced by stacking the third layer, directly supported by short interlayer separations and more interfacial charge transfer. The trilayer shows strong light absorption over a wide range (<700 nm), making it very potential for solar energy harvesting and conversion. Moreover, the Dirac point of GR and band gaps of each layer and trilayer can be readily tuned by external electric field, verifying multilayer vdWs heterostructures with unqiue optoelectronic properties found by experiments. These results suggest that tuning the vdWs interaction, as a new design parameter, would be an effective strategy for devising particular 2D multilayer vdWs heterostructures to meet the demands in various applications.