No Arabic abstract
Multilayer van der Waals (vdWs) heterostructures assembled by diverse atomically thin layers have demonstrated a wide range of fascinating phenomena and novel applications. Understanding the interlayer coupling and its correlation effect is paramount for designing novel vdWs heterostructures with desirable physical properties. Using a detailed theoretical study of 2D MoS2-graphene (GR)-based heterostructures based on state-of-the-art hybrid density functional theory, we reveal that for 2D few-layer heterostructures, vdWs forces between neighboring layers depend on the number of layers. Compared to that in bilayer, the interlayer coupling in trilayer vdW heterostructures can significantly be enhanced by stacking the third layer, directly supported by short interlayer separations and more interfacial charge transfer. The trilayer shows strong light absorption over a wide range (<700 nm), making it very potential for solar energy harvesting and conversion. Moreover, the Dirac point of GR and band gaps of each layer and trilayer can be readily tuned by external electric field, verifying multilayer vdWs heterostructures with unqiue optoelectronic properties found by experiments. These results suggest that tuning the vdWs interaction, as a new design parameter, would be an effective strategy for devising particular 2D multilayer vdWs heterostructures to meet the demands in various applications.
Van der Waals heterostructures give access to a wide variety of new phenomena that emerge thanks to the combination of properties brought in by the constituent layered materials. We show here that owing to an enhanced interaction cross section with electrons in a type I van der Waals heterostructure, made of single layer molybdenum disulphide and thin boron nitride films, electrons and holes created in boron nitride can be transferred to the dichalcogenide where they form electron-hole pairs yielding luminescence. This cathodoluminescence can be mapped with a spatial resolution far exceeding what can be achieved in a typical photoluminescence experiment, and is highly valuable to understand the optoelectronic properties at the nanometer scale. We find that in heterostructures prepared following the mainstream dry transfer technique, cathodoluminescence is locally extinguished, and we show that this extinction is associated with the formation of defects, that are detected in Raman spectroscopy and photoluminescence. We establish that to avoid defect formation induced by low-energy electron beams and to ensure efficient transfer of electrons and holes at the interface between the layers, flat and uniform interlayer interfaces are needed, that are free of trapped species, airborne ones or contaminants associated with sample preparation. We show that heterostructure fabrication using a pick-up technique leads to superior, intimate interlayer contacts associated with significantly more homogeneous cathodoluminescence.
Van-der-Waals heterostructures show many intriguing phenomena including ultrafast charge separation following strong excitonic absorption in the visible spectral range. However, despite the enormous potential for future applications in the field of optoelectronics, the underlying microscopic mechanism remains controversial. Here we use time- and angle-resolved photoemission spectroscopy combined with microscopic many-particle theory to reveal the relevant microscopic charge transfer channels in epitaxial WS$_2$/graphene heterostructures. We find that the timescale for efficient ultrafast charge separation in the material is determined by direct tunneling at those points in the Brillouin zone where WS$_2$ and graphene bands cross, while the lifetime of the charge separated transient state is set by defect-assisted tunneling through localized sulphur vacanices. The subtle interplay of intrinsic and defect-related charge transfer channels revealed in the present work can be exploited for the design of highly efficient light harvesting and detecting devices.
Two-dimensional (2D) van der Waals heterostructures serve as a promising platform to exploit various physical phenomena in a diverse range of novel spintronic device applications. The efficient spin injection is the prerequisite for these devices. The recent discovery of magnetic 2D materials leads to the possibility of fully 2D van der Waals spintronics devices by implementing spin injection through magnetic proximity effect (MPE). Here, we report the investigation of magnetic proximity effect in 2D CrBr3/graphene van der Waals heterostructures, which is probed by Zeeman spin Hall effect through non-local measurements. Zeeman splitting field estimation demonstrates a significant magnetic proximity exchange field even in a low magnetic field. Furthermore, the observed anomalous longitudinal resistance changes at the Dirac point R_(XX,D)with increasing magnetic field at { u} = 0 may attribute to the MPE induced new ground state phases. This MPE revealed in our CrBr3/graphene van der Waals heterostructures therefore provides a solid physics basis and key functionality for next generation 2D spin logic and memory devices.
Graphene constitutes one of the key elements in many functional van der Waals heterostructures. However, it has negligible optical visibility due to its monolayer nature. Here we study the visibility of graphene in various van der Waals heterostructures and include the effects of the source spectrum, oblique incidence and the spectral sensitivity of the detector to obtain a realistic model. A visibility experiment is performed at different wavelengths, resulting in a very good agreement with our calculations. This allows us to reliably predict the conditions for better visibility of graphene in van der Waals heterostructures. The framework and the codes provided in this work can be extended to study the visibility of any 2D material within an arbitrary van der Waals heterostructure.
Two dimensional materials are usually envisioned as flat, truly 2D layers. However out-of-plane corrugations are inevitably present in these materials. In this manuscript, we show that graphene flakes encapsulated between insulating crystals (hBN, WSe2), although having large mobilities, surprisingly contain out-of-plane corrugations. The height fluctuations of these corrugations are revealed using weak localization measurements in the presence of a static in-plane magnetic field. Due to the random out-of-plane corrugations, the in-plane magnetic field results in a random out-of-plane component to the local graphene plane, which leads to a substantial decrease of the phase coherence time. Atomic force microscope measurements also confirm a long range height modulation present in these crystals. Our results suggest that phase coherent transport experiments relying on purely in-plane magnetic fields in van der Waals heterostructures have to be taken with serious care.