No Arabic abstract
We present a joint theoretical and experimental investigation of charge doping and electronic potential landscapes in hybrid structures composed of graphene and semiconducting single layer MoS2. From first-principles simulations we find electron doping of graphene due to the presence of rhenium impurities in MoS2. Furthermore, we show that MoS2 edges give rise to charge reordering and a potential shift in graphene, which can be controlled through external gate voltages. The interplay of edge and impurity effects allows the use of the graphene-MoS2 hybrid as a photodetector. Spatially resolved photocurrent signals can be used to resolve potential gradients and local doping levels in the sample.
It is important to study the van der Waals interface in emerging vertical heterostructures based on layered two-dimensional (2D) materials. Being atomically thin, 2D materials are susceptible to significant strains as well as charge transfer doping across the interfaces. Here we use Raman and photoluminescence (PL) spectroscopy to study the interface between monolayer graphene/MoS2 heterostructures prepared by mechanical exfoliation and layer-by-layer transfer. By using correlation analysis between the Raman modes of graphene and MoS2 we show that both layers are subjected to compressive strain and charge transfer doping following mechanical exfoliation and thermal annealing. Furthermore, we show that both strain and carrier concentration can be modulated in the heterostructures with additional thermal annealing. Our study highlights the importance of considering both mechanical and electronic coupling when characterizing the interface in van der Waals heterostructures, and demonstrates a method to tune their electromechanical properties.
Excitons are electron-hole (e-h) pair quasiparticles, which may form a Bose-Einstein condensate (BEC) and collapse into the phase coherent state at low temperature. However, because of ephemeral strength of pairing, a clear evidence for BEC in electron-hole system has not yet been observed. Here, we report electron-hole pair condensation in graphene (Gr)/MoS2 heterointerface at 10K without magnetic field. As a direct indication of e-h pair condensation, we demonstrate a vanished Hall drag voltage and the resultant divergence of drag resistance. While strong excitons are formed at Gr/MoS2 heterointerface without insulating layer, carrier recombination via interlayer tunneling of carriers is suppressed by the vertical p-Gr/n-MoS2 junction barrier, consequently yielding high BEC temperature of 10K, ~1000 times higher than that of two-dimensional electron gas in III-V quantum wells. The observed excitonic transport is mainly governed by the interfacial properties of the Gr/MoS2 heterostructure, rather than the intrinsic properties of each layer. Our approach with available large-area monolayer graphene and MoS2 provides a high feasibility for quantum dissipationless electronics towards integration.
Different scattering mechanisms in graphene are explored and conductivity is calculated within the Boltzmann transport theory. We provide results for short-range scattering using the Random Phase Approximation for electron screening, as well as analytical expressions for the dependence of conductivity on the dielectric constant of the substrate. We further examine the effect of ripples on the transport using a surface roughness model developed for semiconductor heterostructures. We find that close to the Dirac point, sigma sim n^beta, where beta=1,0,-2 for Coulomb, short-range and surface roughness respectively; implying that Coulomb scattering dominates over both short-range and surface roughness scattering at low density.
We use electron transport to characterize monolayer graphene - multilayer MoS2 heterostructures. Our samples show ambipolar characteristics and conductivity saturation on the electron branch which signals the onset of MoS2 conduction band population. Surprisingly, the carrier density in graphene decreases with gate bias once MoS2 is populated, demonstrating negative compressibility in MoS2. We are able to interpret our measurements quantitatively by accounting for disorder and using the random phase approximation (RPA) for the exchange and correlation energies of both Dirac and parabolic-band two-dimensional electron gases. This interpretation allows us to extract the energetic offset between the conduction band edge of MoS2 and the Dirac point of graphene.
Two-dimensional (2D) heterointerfaces often provide extraordinary carrier transport as exemplified by superconductivity or excitonic superfluidity. Recently, double-layer graphene separated by few-layered boron nitride demonstrated the Coulomb drag phenomenon: carriers in the active layer drag the carriers in the passive layer. Here, we propose a new switching device operating via Coulomb drag interaction at a graphene/MoS2 (GM) heterointerface. The ideal van der Waals distance allows strong coupling of the interlayer electron-hole pairs, whose recombination is prevented by the Schottky barrier formed due to charge transfer at the heterointerface. This device exhibits a high carrier mobility (up to ~3,700 cm^2V^-1s^-1) even at room temperature, while maintaining a high on/off current ratio (~10^8), outperforming those of individual layers. In the electron-electron drag regime, graphene-like Shubnikov-de Haas oscillations are observed at low temperatures. Our Coulomb drag transistor could provide a shortcut for the practical application of quantum-mechanical 2D heterostructures at room temperature.