Do you want to publish a course? Click here

Sensitivity analysis based dimension reduction of multiscale models

106   0   0.0 ( 0 )
 Added by Anna Nikishova
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, the sensitivity analysis of a single scale model is employed in order to reduce the input dimensionality of the related multiscale model, in this way, improving the efficiency of its uncertainty estimation. The approach is illustrated with two examples: a reaction model and the standard Ornstein-Uhlenbeck process. Additionally, a counterexample shows that an uncertain input should not be excluded from uncertainty quantification without estimating the response sensitivity to this parameter. In particular, an analysis of the function defining the relation between single scale components is required to understand whether single scale sensitivity analysis can be used to reduce the dimensionality of the overall multiscale model input space.



rate research

Read More

The global sensitivity analysis of a complex numerical model often calls for the estimation of variance-based importance measures, named Sobol indices. Metamodel-based techniques have been developed in order to replace the cpu time-expensive computer code with an inexpensive mathematical function, which predicts the computer code output. The common metamodel-based sensitivity analysis methods are well-suited for computer codes with scalar outputs. However, in the environmental domain, as in many areas of application, the numerical model outputs are often spatial maps, which may also vary with time. In this paper, we introduce an innovative method to obtain a spatial map of Sobol indices with a minimal number of numerical model computations. It is based upon the functional decomposition of the spatial output onto a wavelet basis and the metamodeling of the wavelet coefficients by the Gaussian process. An analytical example is presented to clarify the various steps of our methodology. This technique is then applied to a real hydrogeological case: for each model input variable, a spatial map of Sobol indices is thus obtained.
SDRcausal is a package that implements sufficient dimension reduction methods for causal inference as proposed in Ghosh, Ma, and de Luna (2021). The package implements (augmented) inverse probability weighting and outcome regression (imputation) estimators of an average treatment effect (ATE) parameter. Nuisance models, both treatment assignment probability given the covariates (propensity score) and outcome regression models, are fitted by using semiparametric locally efficient dimension reduction estimators, thereby allowing for large sets of confounding covariates. Techniques including linear extrapolation, numerical differentiation, and truncation have been used to obtain a practicable implementation of the methods. Finding the suitable dimension reduction map (central mean subspace) requires solving an optimization problem, and several optimization algorithms are given as choices to the user. The package also provides estimators of the asymptotic variances of the causal effect estimators implemented. Plotting options are provided. The core of the methods are implemented in C language, and parallelization is allowed for. The user-friendly and freeware R language is used as interface. The package can be downloaded from Github repository: https://github.com/stat4reg.
In recent years, manifold methods have moved into focus as tools for dimension reduction. Assuming that the high-dimensional data actually lie on or close to a low-dimensional nonlinear manifold, these methods have shown convincing results in several settings. This manifold assumption is often reasonable for functional data, i.e., data representing continuously observed functions, as well. However, the performance of manifold methods recently proposed for tabular or image data has not been systematically assessed in the case of functional data yet. Moreover, it is unclear how to evaluate the quality of learned embeddings that do not yield invertible mappings, since the reconstruction error cannot be used as a performance measure for such representations. In this work, we describe and investigate the specific challenges for nonlinear dimension reduction posed by the functional data setting. The contributions of the paper are three-fold: First of all, we define a theoretical framework which allows to systematically assess specific challenges that arise in the functional data context, transfer several nonlinear dimension reduction methods for tabular and image data to functional data, and show that manifold methods can be used successfully in this setting. Secondly, we subject performance assessment and tuning strategies to a thorough and systematic evaluation based on several different functional data settings and point out some previously undescribed weaknesses and pitfalls which can jeopardize reliable judgment of embedding quality. Thirdly, we propose a nuanced approach to make trustworthy decisions for or against competing nonconforming embeddings more objectively.
In this work, we use the spectral properties of graphons to study stability and sensitivity to noise of deterministic SIS epidemics over large networks. We consider the presence of additive noise in a linearized SIS model and we derive a noise index to quantify the deviation from the disease-free state due to noise. For finite networks, we show that the index depends on the adjacency eigenvalues of its graph. We then assume that the graph is a random sample from a piecewise Lipschitz graphon with finite rank and, using the eigenvalues of the associated graphon operator, we find an approximation of the index that is tight when the network size goes to infinity. A numerical example is included to illustrate the results.
270 - G. Deman , K. Konakli , B. Sudret 2015
The study makes use of polynomial chaos expansions to compute Sobol indices within the frame of a global sensitivity analysis of hydro-dispersive parameters in a simplified vertical cross-section of a segment of the subsurface of the Paris Basin. Applying conservative ranges, the uncertainty in 78 input variables is propagated upon the mean lifetime expectancy of water molecules departing from a specific location within a highly confining layer situated in the middle of the model domain. Lifetime expectancy is a hydrogeological performance measure pertinent to safety analysis with respect to subsurface contaminants, such as radionuclides. The sensitivity analysis indicates that the variability in the mean lifetime expectancy can be sufficiently explained by the uncertainty in the petrofacies, ie the sets of porosity and hydraulic conductivity, of only a few layers of the model. The obtained results provide guidance regarding the uncertainty modeling in future investigations employing detailed numerical models of the subsurface of the Paris Basin. Moreover, the study demonstrates the high efficiency of sparse polynomial chaos expansions in computing Sobol indices for high-dimensional models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا