Do you want to publish a course? Click here

Introducing Bayesian Analysis with $text{m&ms}^circledR$: an active-learning exercise for undergraduates

499   0   0.0 ( 0 )
 Added by Gwendolyn Eadie
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present an active-learning strategy for undergraduates that applies Bayesian analysis to candy-covered chocolate $text{m&ms}^circledR$. The exercise is best suited for small class sizes and tutorial settings, after students have been introduced to the concepts of Bayesian statistics. The exercise takes advantage of the non-uniform distribution of $text{m&ms}^circledR~$ colours, and the difference in distributions made at two different factories. In this paper, we provide the intended learning outcomes, lesson plan and step-by-step guide for instruction, and open-source teaching materials. We also suggest an extension to the exercise for the graduate-level, which incorporates hierarchical Bayesian analysis.



rate research

Read More

Partial measurements of relative position are a relatively common event during the observation of visual binary stars. However, these observations are typically discarded when estimating the orbit of a visual pair. In this article we present a novel framework to characterize the orbits from a Bayesian standpoint, including partial observations of relative position as an input for the estimation of orbital parameters. Our aim is to formally incorporate the information contained in those partial measurements in a systematic way into the final inference. In the statistical literature, an imputation is defined as the replacement of a missing quantity with a plausible value. To compute posterior distributions of orbital parameters with partial observations, we propose a technique based on Markov chain Monte Carlo with multiple imputation. We present the methodology and test the algorithm with both synthetic and real observations, studying the effect of incorporating partial measurements in the parameter estimation. Our results suggest that the inclusion of partial measurements into the characterization of visual binaries may lead to a reduction in the uncertainty associated to each orbital element, in terms of a decrease in dispersion measures (such as the interquartile range) of the posterior distribution of relevant orbital parameters. The extent to which the uncertainty decreases after the incorporation of new data (either complete or partial) depends on how informative those newly-incorporated measurements are. Quantifying the information contained in each measurement remains an open issue.
The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the eLISA concept. The data analysis team has developed complex three-dimensional models of the LISA Technology Package (LTP) experiment on-board LPF. These models are used for simulations, but more importantly, they will be used for parameter estimation purposes during flight operations. One of the tasks of the data analysis team is to identify the physical effects that contribute significantly to the properties of the instrument noise. A way of approaching this problem is to recover the essential parameters of a LTP model fitting the data. Thus, we want to define the simplest model that efficiently explains the observations. To do so, adopting a Bayesian framework, one has to estimate the so-called Bayes Factor between two competing models. In our analysis, we use three main different methods to estimate it: The Reversible Jump Markov Chain Monte Carlo method, the Schwarz criterion, and the Laplace approximation. They are applied to simulated LPF experiments where the most probable LTP model that explains the observations is recovered. The same type of analysis presented in this paper is expected to be followed during flight operations. Moreover, the correlation of the output of the aforementioned methods with the design of the experiment is explored.
116 - Jingjing Yang , Peng Ren 2016
We provide a MATLAB toolbox, BFDA, that implements a Bayesian hierarchical model to smooth multiple functional data with the assumptions of the same underlying Gaussian process distribution, a Gaussian process prior for the mean function, and an Inverse-Wishart process prior for the covariance function. This model-based approach can borrow strength from all functional data to increase the smoothing accuracy, as well as estimate the mean-covariance functions simultaneously. An option of approximating the Bayesian inference process using cubic B-spline basis functions is integrated in BFDA, which allows for efficiently dealing with high-dimensional functional data. Examples of using BFDA in various scenarios and conducting follow-up functional regression are provided. The advantages of BFDA include: (1) Simultaneously smooths multiple functional data and estimates the mean-covariance functions in a nonparametric way; (2) flexibly deals with sparse and high-dimensional functional data with stationary and nonstationary covariance functions, and without the requirement of common observation grids; (3) provides accurately smoothed functional data for follow-up analysis.
Both experimental and computational methods for the exploration of structure, functionality, and properties of materials often necessitate the search across broad parameter spaces to discover optimal experimental conditions and regions of interest in the image space or parameter space of computational models. The direct grid search of the parameter space tends to be extremely time-consuming, leading to the development of strategies balancing exploration of unknown parameter spaces and exploitation towards required performance metrics. However, classical Bayesian optimization strategies based on the Gaussian process (GP) do not readily allow for the incorporation of the known physical behaviors or past knowledge. Here we explore a hybrid optimization/exploration algorithm created by augmenting the standard GP with a structured probabilistic model of the expected systems behavior. This approach balances the flexibility of the non-parametric GP approach with a rigid structure of physical knowledge encoded into the parametric model. The fully Bayesian treatment of the latter allows additional control over the optimization via the selection of priors for the model parameters. The method is demonstrated for a noisy version of the classical objective function used to evaluate optimization algorithms and further extended to physical lattice models. This methodology is expected to be universally suitable for injecting prior knowledge in the form of physical models and past data in the Bayesian optimization framework
We explore the use of random forest and gradient boosting, two powerful tree-based machine learning algorithms, for the detection of cosmic strings in maps of the cosmic microwave background (CMB), through their unique Gott-Kaiser-Stebbins effect on the temperature anisotropies.The information in the maps is compressed into feature vectors before being passed to the learning units. The feature vectors contain various statistical measures of processed CMB maps that boost the cosmic string detectability. Our proposed classifiers, after training, give results improved over or similar to the claimed detectability levels of the existing methods for string tension, $Gmu$. They can make $3sigma$ detection of strings with $Gmu gtrsim 2.1times 10^{-10}$ for noise-free, $0.9$-resolution CMB observations. The minimum detectable tension increases to $Gmu gtrsim 3.0times 10^{-8}$ for a more realistic, CMB S4-like (II) strategy, still a significant improvement over the previous results.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا