No Arabic abstract
Partial measurements of relative position are a relatively common event during the observation of visual binary stars. However, these observations are typically discarded when estimating the orbit of a visual pair. In this article we present a novel framework to characterize the orbits from a Bayesian standpoint, including partial observations of relative position as an input for the estimation of orbital parameters. Our aim is to formally incorporate the information contained in those partial measurements in a systematic way into the final inference. In the statistical literature, an imputation is defined as the replacement of a missing quantity with a plausible value. To compute posterior distributions of orbital parameters with partial observations, we propose a technique based on Markov chain Monte Carlo with multiple imputation. We present the methodology and test the algorithm with both synthetic and real observations, studying the effect of incorporating partial measurements in the parameter estimation. Our results suggest that the inclusion of partial measurements into the characterization of visual binaries may lead to a reduction in the uncertainty associated to each orbital element, in terms of a decrease in dispersion measures (such as the interquartile range) of the posterior distribution of relevant orbital parameters. The extent to which the uncertainty decreases after the incorporation of new data (either complete or partial) depends on how informative those newly-incorporated measurements are. Quantifying the information contained in each measurement remains an open issue.
Inverse probability of treatment weighting (IPTW) is a popular propensity score (PS)-based approach to estimate causal effects in observational studies at risk of confounding bias. A major issue when estimating the PS is the presence of partially observed covariates. Multiple imputation (MI) is a natural approach to handle missing data on covariates, but its use in the PS context raises three important questions: (i) should we apply Rubins rules to the IPTW treatment effect estimates or to the PS estimates themselves? (ii) does the outcome have to be included in the imputation model? (iii) how should we estimate the variance of the IPTW estimator after MI? We performed a simulation study focusing on the effect of a binary treatment on a binary outcome with three confounders (two of them partially observed). We used MI with chained equations to create complete datasets and compared three ways of combining the results: combining treatment effect estimates (MIte); combining the PS across the imputed datasets (MIps); or combining the PS parameters and estimating the PS of the average covariates across the imputed datasets (MIpar). We also compared the performance of these methods to complete case (CC) analysis and the missingness pattern (MP) approach, a method which uses a different PS model for each pattern of missingness. We also studied empirically the consistency of these 3 MI estimators. Under a missing at random (MAR) mechanism, CC and MP analyses were biased in most cases when estimating the marginal treatment effect, whereas MI approaches had good performance in reducing bias as long as the outcome was included in the imputation model. However, only MIte was unbiased in all the studied scenarios and Rubins rules provided good variance estimates for MIte.
In this State of the Profession Consideration, we will discuss the state of hands-on observing within the profession, including: information about professional observing trends; student telescope training, beginning at the undergraduate and graduate levels, as a key to ensuring a base level of technical understanding among astronomers; the role that amateurs can take moving forward; the impact of telescope training on using survey data effectively; and the need for modest investments in new, standard instrumentation at mid-size aperture telescope facilities to ensure their usefulness for the next decade.
We characterize the performance of the widely-used least-squares estimator in astrometry in terms of a comparison with the Cramer-Rao lower variance bound. In this inference context the performance of the least-squares estimator does not offer a closed-form expression, but a new result is presented (Theorem 1) where both the bias and the mean-square-error of the least-squares estimator are bounded and approximated analytically, in the latter case in terms of a nominal value and an interval around it. From the predicted nominal value we analyze how efficient is the least-squares estimator in comparison with the minimum variance Cramer-Rao bound. Based on our results, we show that, for the high signal-to-noise ratio regime, the performance of the least-squares estimator is significantly poorer than the Cramer-Rao bound, and we characterize this gap analytically. On the positive side, we show that for the challenging low signal-to-noise regime (attributed to either a weak astronomical signal or a noise-dominated condition) the least-squares estimator is near optimal, as its performance asymptotically approaches the Cramer-Rao bound. However, we also demonstrate that, in general, there is no unbiased estimator for the astrometric position that can precisely reach the Cramer-Rao bound. We validate our theoretical analysis through simulated digital-detector observations under typical observing conditions. We show that the nominal value for the mean-square-error of the least-squares estimator (obtained from our theorem) can be used as a benchmark indicator of the expected statistical performance of the least-squares method under a wide range of conditions. Our results are valid for an idealized linear (one-dimensional) array detector where intra-pixel response changes are neglected, and where flat-fielding is achieved with very high accuracy.
Several statistical models are given in the form of unnormalized densities, and calculation of the normalization constant is intractable. We propose estimation methods for such unnormalized models with missing data. The key concept is to combine imputation techniques with estimators for unnormalized models including noise contrastive estimation and score matching. In addition, we derive asymptotic distributions of the proposed estimators and construct confidence intervals. Simulation results with truncated Gaussian graphical models and the application to real data of wind direction reveal that the proposed methods effectively enable statistical inference with unnormalized models from missing data.
We present an automatic classification method for astronomical catalogs with missing data. We use Bayesian networks, a probabilistic graphical model, that allows us to perform inference to pre- dict missing values given observed data and dependency relationships between variables. To learn a Bayesian network from incomplete data, we use an iterative algorithm that utilises sampling methods and expectation maximization to estimate the distributions and probabilistic dependencies of variables from data with missing values. To test our model we use three catalogs with missing data (SAGE, 2MASS and UBVI) and one complete catalog (MACHO). We examine how classification accuracy changes when information from missing data catalogs is included, how our method compares to traditional missing data approaches and at what computational cost. Integrating these catalogs with missing data we find that classification of variable objects improves by few percent and by 15% for quasar detection while keeping the computational cost the same.