No Arabic abstract
Lehmann, Symanzik and Zimmermann (LSZ) proved a theorem showing how to obtain the S-matrix from time-ordered Green functions. Their result, the reduction formula, is fundamental to practical calculations of scattering processes. A known problem is that the operators that they use to create asymptotic states create much else besides the intended particles for a scattering process. In the infinite-time limits appropriate to scattering, the extra contributions only disappear in matrix elements with normalizable states, rather than in the created states themselves, i.e., the infinite-time limits of the LSZ creation operators are weak limits. The extra particles that are created are in a different region of space-time than the intended scattering process. To be able to work with particle creation at non-asymptotic times, e.g., to give a transparent and fully deductive treatment for scattering with long-lived unstable particles, it is necessary to have operators for which the infinite-time limits are strong limits. In this paper, I give an improved method of constructing such operators. I use them to give an improved systematic account of scattering theory in relativistic quantum field theories, including a new proof of the reduction formula. I make explicit calculations to illustrate the problems with the LSZ operators and their solution with the new operators. Not only do these verify the existence of the extra particles created by the LSZ operators and indicate a physical interpretation, but they also show that the extra components are so large that their contribution to the norm of the state is ultra-violet divergent in renormalizable theories. Finally, I discuss the relation of this work to the work of Haag and Ruelle on scattering theory.
We analyze in the Landau gauge mixing of bosonic fields in gauge theories with exact and spontaneously broken symmetries, extending to this case the Lehmann-Symanzik-Zimmermann (LSZ) formalism of the asymptotic fields. Factorization of residues of poles (at real and complex values of the variable $p^2$) is demonstrated and a simple practical prescription for finding the square-rooted residues, necessary for calculating $S$-matrix elements, is given. The pseudo-Fock space of asymptotic (in the LSZ sense) states is explicitly constructed and its BRST-cohomological structure is elucidated. Usefulness of these general results, obtained by investigating the relevant set of Slavnov-Taylor identities, is illustrated on the one-loop examples of the $Z^0$-photon mixing in the Standard Model and the $G_Z$-Majoron mixing in the singlet Majoron model.
We point out that in theories where the gravitino mass, $M_{3/2}$, is in the range (10-50)TeV, with soft-breaking scalar masses and trilinear couplings of the same order, there exists a robust region of parameter space where the conditions for electroweak symmetry breaking (EWSB) are satisfied without large imposed cancellations. Compactified string/M-theory with stabilized moduli that satisfy cosmological constraints generically require a gravitino mass greater than about 30 TeV and provide the natural explanation for this phenomenon. We find that even though scalar masses and trilinear couplings (and the soft-breaking $B$ parameter) are of order (10-50)TeV, the Higgs vev takes its expected value and the $mu$ parameter is naturally of order a TeV. The mechanism provides a natural solution to the cosmological moduli and gravitino problems with EWSB.
We propose a novel approach to determine the leading hadronic corrections to the muon g-2. It consists in a measurement of the effective electromagnetic coupling in the space-like region extracted from Bhabha scattering data. We argue that this new method may become feasible at flavor factories, resulting in an alternative determination potentially competitive with the accuracy of the present results obtained with the dispersive approach via time-like data.
A new procedure for the reduction of Carte du Ciel plates is presented. A typical Carte du Ciel plate corresponding to the Bordeaux zone has been taken as an example. It shows triple exposures for each object and the modelling of the data has been performed by means of a non-linear least squares fitting of the sum of three bivariate Gaussian distributions. A number of solutions for the problems present in this kind of plates (optical aberrations, adjacency photographic effects, presence of grid lines, emulsion saturation) have been investigated. An internal accuracy of 0.1 in x and y was obtained for the position of each of the individual exposures. The external reduction to a catalogue led to results with an accuracy of 0.16 in x and 0.13 in y for the mean position of the three exposures. A photometric calibration has also been performed and magnitudes were determined with an accuracy of 0.09 mags.
In this paper, we provide a sufficient condition for a curve on a surface in $mathbb{R}^3$ to be given by an orthogonal intersection with a sphere. This result makes it possible to express the boundary condition entirely in terms of the Weierstrass data without integration when dealing with free boundary minimal surfaces in a ball $mathbb{B}^3$. Moreover, we show that the Gauss map of an embedded free boundary minimal annulus is one to one. By using this, the Fraser-Li conjecture can be translated into the problem of determining the Gauss map. On the other hand, we show that the Liouville type boundary value problem in an annulus gives some new insight into the structure of immersed minimal annuli orthogonal to spheres. It also suggests a new PDE theoretic approach to the Fraser-Li conjecture.