No Arabic abstract
We study the possibility of simultaneously addressing neutrino phenomenology and the dark matter in the framework of inverse seesaw. The model is the extension of the standard model by the addition of two right handed neutrinos and three sterile fermions which leads to a light sterile state with the mass in the keV range along with three light active neutrino states. The lightest sterile neutrino can account for a feasible dark matter(DM) candidate. We present a $S_{4}$ flavor symmetric model which is further augmented by $Z_{4}times Z_{3}$ symmetry to constrain the Yukawa Lagrangian. The structures of the mass matrices involved in inverse seesaw within the $S_{4}$ framework naturally give rise to correct neutrino mass matrix with non-zero reactor mixing angle $ theta_{13}$. In this framework, we conduct a detailed numerical analysis both for normal hierarchy as well as inverted hierarchy to obtain dark matter mass and DM-active mixing which are the key factors for considering sterile neutrino as a viable dark matter candidate. We constrain the parameter space of the model from the latest cosmological bounds on the mass of the dark matter and DM-active mixing.
We investigate a model in which Dark Matter is stabilized by means of a Z2 parity that results from the same non-abelian discrete flavor symmetry which accounts for the observed pattern of neutrino mixing. In our A4 example the standard model is extended by three extra Higgs doublets and the Z2 parity emerges as a remnant of the spontaneous breaking of A4 after electroweak symmetry breaking. We perform an analysis of the parameter space of the model consistent with electroweak precision tests, collider searches and perturbativity. We determine the regions compatible with the observed relic dark matter density and we present prospects for detection in direct as well as indirect Dark Matter search experiments.
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.
We explore the possibility of a single generation of $keV$ scale sterile neutrino ($m_S$) as a dark matter candidate within the minimal extended seesaw (MES) framework and its influence in neutrinoless double beta decay ($0 ubetabeta$) study. Three hierarchical right-handed neutrinos were considered to explain neutrino mass. We also address baryogenesis via the mechanism of thermal leptogenesis considering the decay of the lightest RH neutrino to a lepton and Higgs doublet. A generic model based on $A_4times Z_4times Z_3$ flavor symmetry is constructed to explain both normal and inverted hierarchy mass pattern of neutrinos. Significant results on effective neutrino masses are observed in presence of sterile mass ($m_S$) and active-sterile mixing ($theta_{S}$) in $0 ubetabeta$. Results from $0 ubetabeta$ give stringent upper bounds on the active-sterile mixing matrix element. To establish sterile neutrino as dark matter within this model, we checked decay width and relic abundance of the sterile neutrino, which restricted sterile mass ($m_S$) within some definite bounds. Constrained regions on the CP-phases and Yukawa couplings are obtained from $0 ubetabeta$ and baryogenesis results. Co-relations among these observable are also established and discussed within this framework.
We review sterile neutrinos as possible Dark Matter candidates. After a short summary on the role of neutrinos in cosmology and particle physics, we give a comprehensive overview of the current status of the research on sterile neutrino Dark Matter. First we discuss the motivation and limits obtained through astrophysical observations. Second, we review different mechanisms of how sterile neutrino Dark Matter could have been produced in the early universe. Finally, we outline a selection of future laboratory searches for keV-scale sterile neutrinos, highlighting their experimental challenges and discovery potential.
We consider the possibility of the lightest sterile neutrino dark matter which has dipole interaction with heavier sterile neutrinos. The lifetime can be long enough to be a dark matter candidate without violating other constraints and the correct amount of relic abundance can be produced in the early Universe. We find that a sterile neutrino with the mass of around MeV and the dimension-five non-renormalisable dipole interaction suppressed by $Lambda_5 gtrsim 10^{15}$ GeV can be a good candidate of dark matter, while heavier sterile neutrinos with masses of the order of GeV can explain the active neutrino oscillations.