No Arabic abstract
We study a model of user decision-making in the context of recommender systems via numerical simulation. Our model provides an explanation for the findings of Nguyen, et. al (2014), where, in environments where recommender systems are typically deployed, users consume increasingly similar items over time even without recommendation. We find that recommendation alleviates these natural filter-bubble effects, but that it also leads to an increase in homogeneity across users, resulting in a trade-off between homogenizing across-user consumption and diversifying within-user consumption. Finally, we discuss how our model highlights the importance of collecting data on user beliefs and their evolution over time both to design better recommendations and to further understand their impact.
Recommender systems are present in many web applications to guide our choices. They increase sales and benefit sellers, but whether they benefit customers by providing relevant products is questionable. Here we introduce a model to examine the benefit of recommender systems for users, and found that recommendations from the system can be equivalent to random draws if one relies too strongly on the system. Nevertheless, with sufficient information about user preferences, recommendations become accurate and an abrupt transition to this accurate regime is observed for some algorithms. On the other hand, we found that a high accuracy evaluated by common accuracy metrics does not necessarily correspond to a high real accuracy nor a benefit for users, which serves as an alarm for operators and researchers of recommender systems. We tested our model with a real dataset and observed similar behaviors. Finally, a recommendation approach with improved accuracy is suggested. These results imply that recommender systems can benefit users, but relying too strongly on the system may render the system ineffective.
An enduring issue in higher education is student retention to successful graduation. National statistics indicate that most higher education institutions have four-year degree completion rates around 50 percent, or just half of their student populations. While there are prediction models which illuminate what factors assist with college student success, interventions that support course selections on a semester-to-semester basis have yet to be deeply understood. To further this goal, we develop a system to predict students grades in the courses they will enroll in during the next enrollment term by learning patterns from historical transcript data coupled with additional information about students, courses and the instructors teaching them. We explore a variety of classic and state-of-the-art techniques which have proven effective for recommendation tasks in the e-commerce domain. In our experiments, Factorization Machines (FM), Random Forests (RF), and the Personalized Multi-Linear Regression model achieve the lowest prediction error. Application of a novel feature selection technique is key to the predictive success and interpretability of the FM. By comparing feature importance across populations and across models, we uncover strong connections between instructor characteristics and student performance. We also discover key differences between transfer and non-transfer students. Ultimately we find that a hybrid FM-RF method can be used to accurately predict grades for both new and returning students taking both new and existing courses. Application of these techniques holds promise for student degree planning, instructor interventions, and personalized advising, all of which could improve retention and academic performance.
This article surveys the use of algorithmic systems to support decision-making in the public sector. Governments adopt, procure, and use algorithmic systems to support their functions within several contexts -- including criminal justice, education, and benefits provision -- with important consequences for accountability, privacy, social inequity, and public participation in decision-making. We explore the social implications of municipal algorithmic systems across a variety of stages, including problem formulation, technology acquisition, deployment, and evaluation. We highlight several open questions that require further empirical research.
Using the concept of principal stratification from the causal inference literature, we introduce a new notion of fairness, called principal fairness, for human and algorithmic decision-making. The key idea is that one should not discriminate among individuals who would be similarly affected by the decision. Unlike the existing statistical definitions of fairness, principal fairness explicitly accounts for the fact that individuals can be impacted by the decision. We propose an axiomatic assumption that all groups are created equal. This assumption is motivated by a belief that protected attributes such as race and gender should have no direct causal effects on potential outcomes. Under this assumption, we show that principal fairness implies all three existing statistical fairness criteria once we account for relevant covariates. This result also highlights the essential role of conditioning covariates in resolving the previously recognized tradeoffs between the existing statistical fairness criteria. Finally, we discuss how to empirically choose conditioning covariates and then evaluate the principal fairness of a particular decision.
Society increasingly relies on machine learning models for automated decision making. Yet, efficiency gains from automation have come paired with concern for algorithmic discrimination that can systematize inequality. Recent work has proposed optimal post-processing methods that randomize classification decisions for a fraction of individuals, in order to achieve fairness measures related to parity in errors and calibration. These methods, however, have raised concern due to the information inefficiency, intra-group unfairness, and Pareto sub-optimality they entail. The present work proposes an alternative active framework for fair classification, where, in deployment, a decision-maker adaptively acquires information according to the needs of different groups or individuals, towards balancing disparities in classification performance. We propose two such methods, where information collection is adapted to group- and individual-level needs respectively. We show on real-world datasets that these can achieve: 1) calibration and single error parity (e.g., equal opportunity); and 2) parity in both false positive and false negative rates (i.e., equal odds). Moreover, we show that by leveraging their additional degree of freedom, active approaches can substantially outperform randomization-based classifiers previously considered optimal, while avoiding limitations such as intra-group unfairness.