Do you want to publish a course? Click here

Microwave to optical conversion with atoms on a superconducting chip

244   0   0.0 ( 0 )
 Added by David Petrosyan
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a scheme to coherently convert a microwave photon of a superconducting co-planar waveguide resonator to an optical photon emitted into a well-defined temporal and spatial mode. The conversion is realized by a cold atomic ensemble trapped above the surface of the superconducting atom chip, near the antinode of the microwave cavity. The microwave photon couples to a strong Rydberg transition of the atoms that are also driven by a pair of laser fields with appropriate frequencies and wavevectors for an efficient wave-mixing process. With only few thousand atoms in an ensemble of moderate density, the microwave photon can be completely converted into an optical photon emitted with high probability into the phase matched direction and, e.g., fed into a fiber waveguide. This scheme operates in a free-space configuration, without requiring strong coupling of the atoms to a resonant optical cavity.



rate research

Read More

We demonstrate microwave-to-optical conversion using six-wave mixing in $^{87}$Rb atoms where the microwave field couples to two atomic Rydberg states, and propagates collinearly with the converted optical field. We achieve a photon conversion efficiency of ~5% in the linear regime of the converter. In addition, we theoretically investigate all-resonant six-wave mixing and outline a realistic experimental scheme for reaching efficiencies greater than 60%.
We analyze the design of a potential replacement technology for the commercial ferrite circulators that are ubiquitous in contemporary quantum superconducting microwave experiments. The lossless, lumped element design is capable of being integrated on chip with other superconducting microwave devices, thus circumventing the many performance-limiting aspects of ferrite circulators. The design is based on the dynamic modulation of DC superconducting microwave quantum interference devices (SQUIDs) that function as nearly linear, tunable inductors. The connection to familiar ferrite-based circulators is a simple frame boost in the internal dynamics equation of motion. In addition to the general, schematic analysis, we also give an overview of many considerations necessary to achieve a practical design with a tunable center frequency in the 4-8 GHz frequency band, a bandwidth of 240 MHz, reflections at the -20 dB level, and a maximum signal power of approximately order 100 microwave photons per inverse bandwidth.
We present a design for a superconducting, on-chip circulator composed of dynamically modulated transfer switches and delays. Design goals are set for the multiplexed readout of superconducting qubits. Simulations of the device show that it allows for low-loss circulation (insertion loss < 0.35 dB and isolation >20 dB) over an instantaneous bandwidth of 2.3 GHz. As the device is estimated to be linear for input powers up to -65 dBm, this design improves on the bandwidth and power-handling of previous superconducting circulators by over a factor of 50, making it ideal for integration with broadband quantum limited amplifiers.
Quantum networks are likely to have a profound impact on the way we compute and communicate in the future. In order to wire together superconducting quantum processors over kilometer-scale distances, we need transducers that can generate entanglement between the microwave and optical domains with high fidelity. We present an integrated electro-optic transducer that combines low-loss lithium niobate photonics with superconducting microwave resonators on a sapphire substrate. Our triply-resonant device operates in a dilution refrigerator and converts microwave photons to optical photons with an on-chip efficiency of $6.6times 10^{-6}$ and a conversion bandwidth of 20 MHz. We discuss design trade-offs in this device, including strategies to manage acoustic loss, and outline ways to increase the conversion efficiency in the future.
We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Non-reciprocity is created with a combination of frequency conversion and delay, and requires neither permanent magnets nor microwave bias tones, allowing on-chip integration with other superconducting circuits without the need for high-bandwidth control lines. Isolation in the device exceeds 20 dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at select operation frequencies. Furthermore, the device is linear with respect to input power for signal powers up to hundreds of fW ($approx 10^3$ circulating photons), and the direction of circulation can be dynamically reconfigured. We demonstrate its operation at a selection of frequencies between 4 and 6 GHz.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا