Do you want to publish a course? Click here

Unexpectedly strong effect of supergranulation on the detectability of Earth twins orbiting Sun-like stars with radial velocities

58   0   0.0 ( 0 )
 Added by Nadege Meunier
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic activity and surface flows at different scales pertub radial velocity measurements. This affects the detectability of low-mass exoplanets. In these flows, the effect of supergranulation is not as well characterized as the other flows, and we wish to estimate its effect on the detection of Earth-like planets in the habitable zone of Sun-like stars. We produced time series of radial velocities due to oscillations, granulation, and supergranulation, and estimated the detection limit for a G2 star and a period of 300 days. We also studied in detail the behavior of the power when the signal of a 1 Mearth planet was superposed on the signal from the stellar flows. We find that the detection rate does not reach 100% except for the supergranulation level we assume, which is still optimistic, and for an excellent sampling. We conclude that with current knowledge, it is a very challenging task to find Earth twins around Sun-like stars with our current capabilities.



rate research

Read More

In the near future we will have ground- and space-based telescopes that are designed to observe and characterize Earth-like planets. While attention is focused on exoplanets orbiting main sequence stars, more than 150 exoplanets have already been detected orbiting red giants, opening the intriguing question of what rocky worlds orbiting in the habitable zone of red giants would be like and how to characterize them. We model reflection and emission spectra of Earth-like planets orbiting in the habitable zone of red giant hosts with surface temperatures between 5200 and 3900 K at the Earth-equivalent distance, as well as model planet spectra throughout the evolution of their hosts. We present a high-resolution spectral database of Earth-like planets orbiting in the red giant habitable zone from the visible to infrared, to assess the feasibility of characterizing atmospheric features including biosignatures for such planets with upcoming ground- and space-based telescopes such as the Extremely Large Telescopes and the James Webb Space Telescope.
EarthFinder is a Probe Mission concept selected for study by NASA for input to the 2020 astronomy decadal survey. This study is currently active and a final white paper report is due to NASA at the end of calendar 2018. We are tasked with evaluating the scientific rationale for obtaining precise radial velocity (PRV) measurements in space, which is a two-part inquiry: What can be gained from going to space? What cant be done form the ground? These two questions flow down to these specific tasks for our study - Identify the velocity limit, if any, introduced from micro- and macro-telluric absorption in the Earths atmosphere; Evaluate the unique advantages that a space-based platform provides to emable the identification and mitigation of stellar acitivity for multi-planet signal recovery.
Kepler is a space telescope that searches Sun-like stars for planets. Its major goal is to determine {eta}_Earth, the fraction of Sunlike stars that have planets like Earth. When a planet transits or moves in front of a star, Kepler can measure the concomitant dimming of the starlight. From analysis of the first four months of those measurements for over 150,000 stars, Keplers science team has determined sizes, surface temperatures, orbit sizes and periods for over a thousand new planet candidates. In this paper, we characterize the period probability distribution function of the super-Earth and Neptune planet candidates with periods up to 132 days, and find three distinct period regimes. For candidates with periods below 3 days the density increases sharply with increasing period; for periods between 3 and 30 days the density rises more gradually with increasing period, and for periods longer than 30 days, the density drops gradually with increasing period. We estimate that 1% to 3% of stars like the Sun are expected to have Earth analog planets, based on the Kepler data release of Feb 2011. This estimate of is based on extrapolation from a fiducial subsample of the Kepler planet candidates that we chose to be nominally complete (i.e., no missed detections) to the realm of the Earth-like planets, by means of simple power law models. The accuracy of the extrapolation will improve as more data from the Kepler mission is folded in. Accurate knowledge of {eta}_Earth is essential for the planning of future missions that will image and take spectra of Earthlike planets. Our result that Earths are relatively scarce means that a substantial effort will be needed to identify suitable target stars prior to these future missions.
We report the discovery of a second planet orbiting the K giant star 7 CMa based on 166 high-precision radial velocities obtained with Lick, HARPS, UCLES and SONG. The periodogram analysis reveals two periodic signals of approximately 745 and 980 d, associated to planetary companions. A double-Keplerian orbital fit of the data reveals two Jupiter-like planets with minimum masses $m_bsin i sim 1.9 ,mathrm{M_{J}}$ and $m_csin i sim 0.9 ,mathrm{M_{J}}$, orbiting at semi-major axes of $a_b sim 1.75,mathrm{au}$ and $a_c sim 2.15,mathrm{au}$, respectively. Given the small orbital separation and the large minimum masses of the planets close encounters may occur within the time baseline of the observations, thus, a more accurate N-body dynamical modeling of the available data is performed. The dynamical best-fit solution leads to collision of the planets and we explore the long-term stable configuration of the system in a Bayesian framework, confirming that 13% of the posterior samples are stable for at least 10 Myr. The result from the stability analysis indicates that the two-planets are trapped in a low-eccentricity 4:3 mean-motion resonance. This is only the third discovered system to be inside a 4:3 resonance, making it very valuable for planet formation and orbital evolution models.
Radial velocity identification of extrasolar planets has historically been dominated by optical surveys. Interest in expanding exoplanet searches to M dwarfs and young stars, however, has motivated a push to improve the precision of near infrared radial velocity techniques. We present our methodology for achieving 58 m/s precision in the K band on the M0 dwarf GJ 281 using the CSHELL spectrograph at the 3-meter NASA IRTF. We also demonstrate our ability to recover the known 4 Mjup exoplanet Gl 86 b and discuss the implications for success in detecting planets around 1-3 Myr old T Tauri stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا