Do you want to publish a course? Click here

EarthFinder: A Precise Radial Velocity Probe Mission Concept For the Detection of Earth-Mass Planets Orbiting Sun-like Stars

94   0   0.0 ( 0 )
 Added by Peter Plavchan
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

EarthFinder is a Probe Mission concept selected for study by NASA for input to the 2020 astronomy decadal survey. This study is currently active and a final white paper report is due to NASA at the end of calendar 2018. We are tasked with evaluating the scientific rationale for obtaining precise radial velocity (PRV) measurements in space, which is a two-part inquiry: What can be gained from going to space? What cant be done form the ground? These two questions flow down to these specific tasks for our study - Identify the velocity limit, if any, introduced from micro- and macro-telluric absorption in the Earths atmosphere; Evaluate the unique advantages that a space-based platform provides to emable the identification and mitigation of stellar acitivity for multi-planet signal recovery.



rate research

Read More

EarthFinder is a NASA Astrophysics Probe mission concept selected for study as input to the 2020 Astrophysics National Academies Decadal Survey. The EarthFinder concept is based on a dramatic shift in our understanding of how PRV measurements should be made. We propose a new paradigm which brings the high precision, high cadence domain of transit photometry as demonstrated by Kepler and TESS to the challenges of PRV measurements at the cm/s level. This new paradigm takes advantage of: 1) broad wavelength coverage from the UV to NIR which is only possible from space to minimize the effects of stellar activity; 2) extremely compact, highly stable, highly efficient spectrometers (R>150,000) which require the diffraction-limited imaging possible only from space over a broad wavelength range; 3) the revolution in laser-based wavelength standards to ensure cm/s precision over many years; 4) a high cadence observing program which minimizes sampling-induced period aliases; 5) exploiting the absolute flux stability from space for continuum normalization for unprecedented line-by-line analysis not possible from the ground; and 6) focusing on the bright stars which will be the targets of future imaging missions so that EarthFinder can use a ~1.5 m telescope.
Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the Continuous Habitable Zone (CHZ) for ~8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarisation due to a terrestrial planet in the CHZ of a cool white dwarf is 10^2 (10^4) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow reveal the presence of a planet atmosphere, providing a first characterisation. Planets in the CHZ of a 0.6 M_sun white dwarf will be distorted by Roche geometry, and a Kepler-11d analogue would overfill its Roche lobe. With current facilities a Super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known cool white dwarf. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.
High fidelity iodine spectra provide the wavelength and instrument calibration needed to extract precise radial velocities (RVs) from stellar spectral observations taken through iodine cells. Such iodine spectra are usually taken by a Fourier Transform Spectrometer (FTS). In this work, we investigated the reason behind the discrepancy between two FTS spectra of the iodine cell used for precise RV work with the High Resolution Spectrograph (HRS) at the Hobby-Eberly Telescope. We concluded that the discrepancy between the two HRS FTS spectra was due to temperature changes of the iodine cell. Our work demonstrated that the ultra-high resolution spectra taken by the TS12 arm of the Tull Spectrograph One at McDonald Observatory are of similar quality to the FTS spectra and thus can be used to validate the FTS spectra. Using the software IodineSpec5, which computes the iodine absorption lines at different temperatures, we concluded that the HET/HRS cell was most likely not at its nominal operating temperature of 70 degree Celsius during its FTS scan at NIST or at the TS12 measurement. We found that extremely high resolution echelle spectra (R>200,000) can validate and diagnose deficiencies in FTS spectra. We also recommend best practices for temperature control and nightly calibration of iodine cells.
The solar telescope connected to HARPS-N has been observing the Sun since the summer of 2015. Such high-cadence, long-baseline data set is crucial for understanding spurious radial-velocity signals induced by our Sun and by the instrument. On the instrumental side, this data set allowed us to detect sub-ms,systematics that needed to be corrected for. The goal of this manuscript is to i) present a new data reduction software for HARPS-N, ii) demonstrate the improvement brought by this new software on the first three years of the HARPS-N solar data set, and iii) release all the obtained solar products, from extracted spectra to precise radial velocities. To correct for the instrumental systematics observed in the data reduced with the current version of the HARPS-N data reduction software (DRS version 3.7), we adapted the newly available ESPRESSO DRS (version 2.2.3) to HARPS-N and developed new optimized recipes for the spectrograph. We then compared the first three years of HARPS-N solar data reduced with the current and new DRS. The most significant improvement brought by the new DRS is a strong decrease in the day-to-day radial-velocity scatter, from 1.27 to 1.07ms; this is thanks to a more robust method to derive wavelength solutions, but also to the use of calibrations closer in time. The newly derived solar radial-velocities are also better correlated with the chromospheric activity level of the Sun on the long-term, with a Pearson correlation coefficient of 0.93 compared to 0.77 before, which is expected from our understanding of stellar signals. Finally, we also discuss how HARPS-N spectral ghosts contaminate the measurement of the calcium activity index, and present an efficient technique to derive an index free of instrumental systematics. This paper presents a new data reduction software for HARPS-N, and demonstrates its improvements [...]
118 - Artie P. Hatzes 2013
We present an analysis of the publicly available HARPS radial velocity (RV) measurements for Alpha Cen B, a star hosting an Earth-mass planet candidate in a 3.24 day orbit. The goal is to devise robust ways of extracting low-amplitude RV signals of low mass planets in the presence of activity noise. Two approaches were used to remove the stellar activity signal which dominates the RV variations: 1) Fourier component analysis (pre-whitening), and 2) local trend filtering (LTF) of the activity using short time windows of the data. The Fourier procedure results in a signal at P = 3.236 days and K = 0.42 m/s which is consistent with the presence of an Earth-mass planet, but the false alarm probability for this signal is rather high at a few percent. The LTF results in no significant detection of the planet signal, although it is possible to detect a marginal planet signal with this method using a different choice of time windows and fitting functions. However, even in this case the significance of the 3.24-d signal depends on the details of how a time window containing only 10% of the data is filtered. Both methods should have detected the presence of Alpha Cen Bb at a higher significance than is actually seen. We also investigated the influence of random noise with a standard deviation comparable to the HARPS data and sampled in the same way. The distribution of the noise peaks in the period range 2.8 - 3.3 days have a maximum of approximately 3.2 days and amplitudes approximately one-half of the K-amplitude for the planet. The presence of the activity signal may boost the velocity amplitude of these signals to values comparable to the planet. It may be premature to attribute the 3.24 day RV variations to an Earth-mass planet. A better understanding of the noise characteristics in the RV data as well as more measurements with better sampling will be needed to confirm this exoplanet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا