Do you want to publish a course? Click here

Unsteady aerodynamic effects in small-amplitude pitch oscillations of an airfoil

65   0   0.0 ( 0 )
 Added by Prabal Negi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-fidelity wall-resolved large-eddy simulations (LES) are utilized to investigate the flow-physics of small-amplitude pitch oscillations of an airfoil at Re = 100,000. The investigation of the unsteady phenomenon is done in the context of natural laminar flow airfoils, which can display sensitive dependence of the aerodynamic forces on the angle of attack in certain off-design conditions. The dynamic range of the pitch oscillations is chosen to be in this sensitive region. Large variations of the transition point on the suction-side of the airfoil are observed throughout the pitch cycle resulting in a dynamically rich flow response. Changes in the stability characteristics of a leading-edge laminar separation bubble has a dominating influence on the boundary layer dynamics and causes an abrupt change in the transition location over the airfoil. The LES procedure is based on a relaxation-term which models the dissipation of the smallest unresolved scales. The validation of the procedure is provided for channel flows and for a stationary wing at Re = 400,000.



rate research

Read More

We extend the impulse theory for unsteady aerodynamics, from its classic global form to finite-domain formulation then to minimum-domain form, and from incompressible to compressible flows. For incompressible flow, the minimum-domain impulse theory raises the finding of Li and Lu (J. Fluid Mech., 712: 598-613, 2012) to a theorem: The entire force with discrete wake is completely determined by only the time rate of impulse of those vortical structures still connecting to the body, along with the Lamb-vector integral thereof that captures the contribution of all the rest disconnected vortical structures. For compressible flow, we find that the global form in terms of the curl of momentum, obtained by Huang (Unsteady Vortical Aerodynamics. Shanghai Jiaotong Univ. Press, 1994), can be generalized to having arbitrary finite domain, but the formula is cumbersome and in general the curl of momentum no longer has discrete structure and hence no minimum-domain theory exists. Nevertheless, as the measure of transverse process only, the unsteady field of vorticity may still have discrete wake. This leads to a minimum-domain compressible vorticity-moment theory in terms of density-weighted vorticity (but it is beyond the classic concept of impulse). These new findings and applications have been confirmed by our numerical experiments. The results not only open an avenue to combine the theory with computation-experiment in wide applications, but also reveals a physical truth that it is no longer necessary to account for all wake vortical structures in computing the force and moment.
We investigate superfluid flow around an airfoil accelerated to a finite velocity from rest. Using simulations of the Gross--Pitaevskii equation we find striking similarities to viscous flows: from production of starting vortices to convergence of airfoil circulation onto a quantized version of the Kutta-Joukowski circulation. We predict the number of quantized vortices nucleated by a given foil via a phenomenological argument. We further find stall-like behavior governed by airfoil speed, not angle of attack, as in classical flows. Finally we analyze the lift and drag acting on the airfoil.
It is well known that the reversibility of Stokes flow makes it difficult for small microorganisms to swim. Inertial effects break this reversibility, allowing new mechanisms of propulsion and feeding. Therefore it is important to estimate the effect of unsteady and fluid inertia on the dynamics of microorganisms in flow. In this work, we show how to translate known inertial effects for non-motile organisms to motile ones, from passive to active particles. The method relies on a trick used earlier by Legendre and Magnaudet to deduce inertial corrections to the lift force on a bubble from Saffmans results for a solid sphere, using the fact that small inertial effects are determined by the far field of the disturbance flow. The method allows to compute the inertial effect of unsteady fluid accelerations on motile organisms, and the inertial forces they experience in steady shear flow. We explain why the method fails to describe the effect of convective fluid inertia.
Large-amplitude oscillations of foils have been observed to yield greater propulsive efficiency than small-amplitude oscillations. Using scaling relations and experiments on foils with peak-to-peak trailing edge amplitudes of up to two chord lengths, we explain why this is so. In the process, we reveal the importance of drag, specifically how it can significantly reduce the efficiency, and how this effect depends on amplitude. The scaling relations and experimental data also reveal a fundamental tradeoff between high thrust and high efficiency, where the drag also plays a crucial role.
Recent experiments and simulations have shown that unsteady turbulent flows, before reaching a dynamic equilibrium state, display a universal behaviour. We show that the observed universal non-equilibrium scaling can be explained using a non-equilibrium correction of Kolmogorovs energy spectrum. Given the universality of the experimental and numerical observations, the ideas presented here lay the foundation for the modeling of a wide class of unsteady turbulent flows.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا