Do you want to publish a course? Click here

Dissipation in unsteady turbulence

114   0   0.0 ( 0 )
 Added by Wouter Bos
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent experiments and simulations have shown that unsteady turbulent flows, before reaching a dynamic equilibrium state, display a universal behaviour. We show that the observed universal non-equilibrium scaling can be explained using a non-equilibrium correction of Kolmogorovs energy spectrum. Given the universality of the experimental and numerical observations, the ideas presented here lay the foundation for the modeling of a wide class of unsteady turbulent flows.



rate research

Read More

A systematic study of the influence of the viscous effect on both the spectra and the nonlinear fluxes of conserved as well as non conserved quantities in Navier-Stokes turbulence is proposed. This analysis is used to estimate the helicity dissipation scale which is shown to coincide with the energy dissipation scale. However, it is shown using the decomposition of helicity into eigen modes of the curl operator, that viscous effects have to be taken into account for wave vector smaller than the Kolomogorov wave number in the evolution of these eigen components of the helicity.
We revisit the issue of Lagrangian irreversibility in the context of recent results [Xu, et al., PNAS, 111, 7558 (2014)] on flight-crash events in turbulent flows and show how extreme events in the Eulerian dissipation statistics are related to the statistics of power-fluctuations for tracer trajectories. Surprisingly, we find that particle trajectories in intense dissipation zones are dominated by energy gains sharper than energy losses, contrary to flight-crashes, through a pressure-gradient driven take-off phenomenon. Our conclusions are rationalised by analysing data from simulations of three-dimensional intermittent turbulence, as well as from non-intermittent decimated flows. Lagrangian irreversibility is found to persist even in the latter case, wherein fluctuations of the dissipation rate are shown to be relatively mild and to follow probability distribution functions with exponential tails.
Intense fluctuations of energy dissipation rate in turbulent flows result from the self-amplification of strain rate via a quadratic nonlinearity, with contributions from vorticity (via the vortex stretching mechanism) and the pressure Hessian tensor, which we analyze here using direct numerical simulations of isotropic turbulence in periodic domains of up to $12288^3$ grid points, and Taylor-scale Reynolds numbers in the range $140-1300$. We extract the statistics of various terms involved in amplification of strain and additionally condition them on the magnitude of strain. We find that strain is overall self-amplified by the quadratic nonlinearity, and depleted via vortex stretching; whereas pressure Hessian acts to redistribute strain fluctuations towards the mean-field and thus depleting intense strain. Analyzing the intense fluctuations of strain in terms of its eigenvalues reveals that the net amplification is solely produced by the third eigenvalue, resulting in strong compressive action. In contrast, the self-amplification terms acts to deplete the other two eigenvalues, whereas vortex stretching acts to amplify them, both effects canceling each other almost perfectly. The effect of the pressure Hessian for each eigenvalue is qualitatively similar to that of vortex stretching, but significantly weaker in magnitude. Our results conform with the familiar notion that intense strain is organized in sheet-like structures, which are in the vicinity of, but never overlap with regions of intense vorticity due to fundamental differences in their amplifying mechanisms.
We revisit the issue of whether thermal fluctuations are relevant for incompressible fluid turbulence, and estimate the scale at which they become important. As anticipated by Betchov in a prescient series of works more than six decades ago, this scale is about equal to the Kolmogorov length, even though that is several orders of magnitude above the mean free path. This result implies that the deterministic version of the incompressible Navier-Stokes equation is inadequate to describe the dissipation range of turbulence in molecular fluids. Within this range, the fluctuating hydrodynamics equation of Landau and Lifschitz is more appropriate. In particular, our analysis implies that both the exponentially decaying energy spectrum and the far-dissipation range intermittency predicted by Kraichnan for deterministic Navier-Stokes will be generally replaced by Gaussian thermal equipartition at scales just below the Kolmogorov length. Stochastic shell model simulations at high Reynolds numbers verify our theoretical predictions and reveal furthermore that inertial-range intermittency can propagate deep into the dissipation range, leading to large fluctuations in the equipartition length scale. We explain the failure of previous scaling arguments for the validity of deterministic Navier-Stokes equations at any Reynolds number and we provide a mathematical interpretation and physical justification of the fluctuating Navier-Stokes equation as an ``effective field-theory valid below some high-wavenumber cutoff $Lambda$, rather than as a continuum stochastic partial differential equation. At Reynolds number around a million the strongest turbulent excitations observed in our simulation penetrate down to a length-scale of microns. However, for longer observation times or higher Reynolds numbers, more extreme turbulent events could lead to a local breakdown of fluctuating hydrodynamics.
The concept of inverse statistics in turbulence has attracted much attention in the recent years. It is argued that the scaling exponents of the direct structure functions and the inverse structure functions satisfy an inversion formula. This proposition has already been verified by numerical data using the shell model. However, no direct evidence was reported for experimental three dimensional turbulence. We propose to test the inversion formula using experimental data of three dimensional fully developed turbulence by considering the energy dissipation rates in stead of the usual efforts on the structure functions. The moments of the exit distances are shown to exhibit nice multifractality. The inversion formula between the direct and inverse exponents is then verified.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا