Do you want to publish a course? Click here

Knots and Non-Hermitian Bloch Bands

156   0   0.0 ( 0 )
 Added by Haiping Hu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Knots have a twisted history in quantum physics. They were abandoned as failed models of atoms. Only much later was the connection between knot invariants and Wilson loops in topological quantum field theory discovered. Here we show that knots tied by the eigenenergy strings provide a complete topological classification of one-dimensional non-Hermitian (NH) Hamiltonians with separable bands. A $mathbb{Z}_2$ knot invariant, the global biorthogonal Berry phase $Q$ as the sum of the Wilson loop eigenphases, is proved to be equal to the permutation parity of the NH bands. We show the transition between two phases characterized by distinct knots occur through exceptional points and come in two types. We further develop an algorithm to construct the corresponding tight-binding NH Hamiltonian for any desired knot, and propose a scheme to probe the knot structure via quantum quench. The theory and algorithm are demonstrated by model Hamiltonians that feature for example the Hopf link, the trefoil knot, the figure-8 knot and the Whitehead link.



rate research

Read More

Non-Bloch topological invariants preserve the bulk-boundary correspondence in non-Hermitian topological systems, and are a key concept in the contemporary study of non-Hermitian topology. Here we report the dynamic detection of non-Bloch topological invariants in single-photon quantum walks, revealed through the biorthogonal chiral displacement, and crosschecked with the dynamic spin textures in the generalized quasimomentum-time domain following a quantum quench. Both detection schemes are robust against symmetry-preserving disorders, and yield consistent results with theoretical predictions. Our experiments are performed far away from any boundaries, and therefore underline non-Bloch topological invariants as intrinsic properties of the system that persist in the thermodynamic limit. Our work sheds new light on the experimental investigation of non-Hermitian topology.
236 - Simon Lieu 2019
We introduce non-Hermitian generalizations of Majorana zero modes (MZMs) which appear in the topological phase of a weakly dissipative Kitaev chain coupled to a Markovian bath. Notably, the presence of MZMs ensures that the steady state in the absence of decoherence events is two-fold degenerate. Within a stochastic wavefunction approach, the effective Hamiltonian governing the coherent, non-unitary dynamics retains BDI classification of the closed limit, but belongs to one of four non-Hermitian flavors of the ten-fold way. We argue for the stability of MZMs due to a generalization of particle-hole symmetry, and uncover the resulting topological phase diagram. Qualitative features of our study generalize to two-dimensional chiral superconductors. The dissipative superconducting chain can be mapped to an Ising model in a complex transverse field, and we discuss potential signatures of the degeneracy.
Non-Hermitian skin effect, namely that the eigenvalues and eigenstates of a non-Hermitian tight-binding Hamiltonian have significant differences under open or periodic boundary conditions, is a remarkable phenomenon of non-Hermitian systems. Inspired by the presence of the non-Hermitian skin effect, we study the evolution of wave-packets in non-Hermitian systems, which can be determined using the single-particle Greens function. Surprisingly, we find that in the thermodynamical limit, the Greens function does not depend on boundary conditions, despite the presence of skin effect. We proffer a general proof for this statement in arbitrary dimension with finite hopping range, with an explicit illustration in the non-Hermitian Su-Schrieffer-Heeger model. We also explore its applications in non-interacting open quantum systems described by the master equation, where we demonstrate that the evolution of the density matrix is independent of the boundary condition.
We propose a method of computing and studying entanglement quantities in non-Hermitian systems by use of a biorthogonal basis. We find that the entanglement spectrum characterizes the topological properties in terms of the existence of mid-gap states in the non-Hermitian Su-Schrieffer-Heeger (SSH) model with parity and time-reversal symmetry (PT symmetry) and the non-Hermitian Chern insulators. In addition, we find that at a critical point in the PT symmetric SSH model, the entanglement entropy has a logarithmic scaling with corresponding central charge $c=-2$. This critical point then is a free-fermion lattice realization of the non-unitary conformal field theory.
110 - Zhesen Yang 2020
In conventional Hermitian systems with the open boundary condition, Blochs theorem is perturbatively broken down, which means although the crystal momentum is not a good quantum number, the eigenstates are the superposition of several extended Bloch waves. In this paper, we show that Blochs theorem can be non-perturbatively broken down in some Hermitian Bosonic systems. The quasiparticles of the system are the superposition of localized non-Bloch waves, which are characterized by the complex momentum whose imaginary part determines the localization properties. Our work is a Hermitian generalization of the non-Hermitian skin effect, although they share the same mechanism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا