No Arabic abstract
There has been a considerable amount of interest in recent years in the problem of workflow satisfiability, which asks whether the existence of constraints in a workflow specification makes it impossible to allocate authorized users to each step in the workflow. Recent developments have seen the workflow satisfiability problem (WSP) studied in the context of workflow specifications in which the set of steps may vary from one instance of the workflow to another. This, in turn, means that some constraints may only apply to certain workflow instances. Inevitably, WSP becomes more complex for such workflow specifications. Other approaches have considered the possibility of associating costs with the violation of `soft constraints and authorizations. Workflow satisfiability in this context becomes a question of minimizing the cost of allocating users to steps in the workflow. In this paper, we introduce new problems, which we believe to be of practical relevance, that combine these approaches. In particular, we consider the question of whether, given a workflow specification with costs and a `budget, all possible workflow instances have an allocation of users to steps that does not exceed the budget. We design a fixed-parameter tractable algorithm to solve this problem parameterized by the total number of steps, release points and xor branchings.
A (1 + eps)-approximate distance oracle for a graph is a data structure that supports approximate point-to-point shortest-path-distance queries. The most relevant measures for a distance-oracle construction are: space, query time, and preprocessing time. There are strong distance-oracle constructions known for planar graphs (Thorup, JACM04) and, subsequently, minor-excluded graphs (Abraham and Gavoille, PODC06). However, these require Omega(eps^{-1} n lg n) space for n-node graphs. We argue that a very low space requirement is essential. Since modern computer architectures involve hierarchical memory (caches, primary memory, secondary memory), a high memory requirement in effect may greatly increase the actual running time. Moreover, we would like data structures that can be deployed on small mobile devices, such as handhelds, which have relatively small primary memory. In this paper, for planar graphs, bounded-genus graphs, and minor-excluded graphs we give distance-oracle constructions that require only O(n) space. The big O hides only a fixed constant, independent of epsilon and independent of genus or size of an excluded minor. The preprocessing times for our distance oracle are also faster than those for the previously known constructions. For planar graphs, the preprocessing time is O(n lg^2 n). However, our constructions have slower query times. For planar graphs, the query time is O(eps^{-2} lg^2 n). For our linear-space results, we can in fact ensure, for any delta > 0, that the space required is only 1 + delta times the space required just to represent the graph itself.
We study the satisfiability of ordering constraint satisfaction problems (CSPs) above average. We prove the conjecture of Gutin, van Iersel, Mnich, and Yeo that the satisfiability above average of ordering CSPs of arity $k$ is fixed-parameter tractable for every $k$. Previously, this was only known for $k=2$ and $k=3$. We also generalize this result to more general classes of CSPs, including CSPs with predicates defined by linear inequalities. To obtain our results, we prove a new Bonami-type inequality for the Efron-Stein decomposition. The inequality applies to functions defined on arbitrary product probability spaces. In contrast to other variants of the Bonami Inequality, it does not depend on the mass of the smallest atom in the probability space. We believe that this inequality is of independent interest.
Though competitive analysis is often a very good tool for the analysis of online algorithms, sometimes it does not give any insight and sometimes it gives counter-intuitive results. Much work has gone into exploring other performance measures, in particular targeted at what seems to be the core problem with competitive analysis: the comparison of the performance of an online algorithm is made to a too powerful adversary. We consider a new approach to restricting the power of the adversary, by requiring that when judging a given online algorithm, the optimal offline algorithm must perform as well as the online algorithm, not just on the entire final request sequence, but also on any prefix of that sequence. This is limiting the adversarys usual advantage of being able to exploit that it knows the sequence is continuing beyond the current request. Through a collection of online problems, including machine scheduling, bin packing, dual bin packing, and seat reservation, we investigate the significance of this particular offline advantage.
We consider the problem of computing a $(1+epsilon)$-approximation of the Hamming distance between a pattern of length $n$ and successive substrings of a stream. We first look at the one-way randomised communication complexity of this problem, giving Alice the first half of the stream and Bob the second half. We show the following: (1) If Alice and Bob both share the pattern then there is an $O(epsilon^{-4} log^2 n)$ bit randomised one-way communication protocol. (2) If only Alice has the pattern then there is an $O(epsilon^{-2}sqrt{n}log n)$ bit randomised one-way communication protocol. We then go on to develop small space streaming algorithms for $(1+epsilon)$-approximate Hamming distance which give worst case running time guarantees per arriving symbol. (1) For binary input alphabets there is an $O(epsilon^{-3} sqrt{n} log^{2} n)$ space and $O(epsilon^{-2} log{n})$ time streaming $(1+epsilon)$-approximate Hamming distance algorithm. (2) For general input alphabets there is an $O(epsilon^{-5} sqrt{n} log^{4} n)$ space and $O(epsilon^{-4} log^3 {n})$ time streaming $(1+epsilon)$-approximate Hamming distance algorithm.
Set functions with convenient properties (such as submodularity) appear in application areas of current interest, such as algorithmic game theory, and allow for improved optimization algorithms. It is natural to ask (e.g., in the context of data driven optimization) how robust such properties are, and whether small deviations from them can be tolerated. We consider two such questions in the important special case of linear set functions. One question that we address is whether any set function that approximately satisfies the modularity equation (linear functions satisfy the modularity equation exactly) is close to a linear function. The answer to this is positive (in a precise formal sense) as shown by Kalton and Roberts [1983] (and further improved by Bondarenko, Prymak, and Radchenko [2013]). We revisit their proof idea that is based on expander graphs, and provide significantly stronger upper bounds by combining it with new techniques. Furthermore, we provide improved lower bounds for this problem. Another question that we address is that of how to learn a linear function $h$ that is close to an approximately linear function $f$, while querying the value of $f$ on only a small number of sets. We present a deterministic algorithm that makes only linearly many (in the number of items) nonadaptive queries, by this improving over a previous algorithm of Chierichetti, Das, Dasgupta and Kumar [2015] that is randomized and makes more than a quadratic number of queries. Our learning algorithm is based on a Hadamard transform.