Do you want to publish a course? Click here

Analysis and Identification of Controller Interaction and Limitation in VSC-HVDC Grid

78   0   0.0 ( 0 )
 Added by Lokesh Dewangan
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

With the advancement of the idea of the HVDC grid, it becomes imperative to study the interaction of controller and identification of modes of oscillations. The paper presents the complete model of HVDC grid with detailed modeling of controllers, phase lock loops (PLLs), dc grid and the ac systems. An analytical method combining participation factors and Eigen-sensitivity is proposed to determine the relative stability of the HVDC grid with respect to parameter variations. The paper also proposes the identification of inter-area and controller interaction modes on the basis of the nearest distance between the eigenvalues using the derived sensitivity indices. The critical parameters are varied in a mixed short circuit ratio (SCR) HVDC grid and predictions from the analysis method are confirmed with time-domain simulation in PSCAD simulator



rate research

Read More

Stability of power grids with synchronous generators (SGs) and renewable generation interfaced with grid-forming converters (GFCs) under dc-side current limitation is studied. To that end, we first consider a simple 2-bus test system and reduced-order models to highlight the fundamental difference between two classes of GFC controls -- (A) droop, dispatchable virtual oscillator control (dVOC) and virtual synchronous machine (VSM), and (B) matching control. Next, we study Lyapunov stability and input-output stability of the dc voltage dynamics of class-A GFCs for the simple system and extend it to a generic system. Next, we provide a sufficiency condition for input-to-state stability of the 2-bus system with a class-B GFC and extend it for a generic system. Finally, time-domain simulations from a reduced-order averaged model of the simple test system and a detailed switched model of the GFC validate the proposed conditions.
Interaction graphs provide an important qualitative modeling approach for System Biology. This paper presents a novel approach for construction of interaction graph with the help of Boolean function decomposition. Each decomposition part (Consisting of 2-bits) of the Boolean functions has some important significance. In the dynamics of a biological system, each variable or node is nothing but gene or protein. Their regulation has been explored in terms of interaction graphs which are generated by Boolean functions. In this paper, different classes of Boolean functions with regards to Interaction Graph with biologically significant properties have been adumbrated.
Quadrotor is often used to accomplish various missions related to surveillance, territory mapping, search and rescue, and other purposes. Quadrotor is a nonlinear system with multiple input multiple output and has stability issue due to external disturbance. These characteristics lead to difficulty in cruise control of quadrotor automatically. Decoupling method is used to eliminate the interaction of other control on rotational motion, then the roll, pitch, and yaw angle can be controlled independently. Nonlinear PD controller is obtained from invers model of control signal on a quad rotor and it is used to control the translational motion in x and y axis with nonlinear dynamics because of the influence the rotational angle. Simulation results show that the proposed method can eliminate the control interaction of roll, pitch and yaw angle, hence it works like single input single output system and translational motion on x andy axis can achieve the expected trajectory precisely.
The relationship between the short circuit ratio (SCR) and static voltage stability is analyzed in this paper. According to eigenvalue decomposition method, a novel concept named generalized short circuit ratio (gSCR) has been proposed for multi-infeed LCC-HVDC (MIDC) systems to mathematically measure the connect-ed AC strength from the point view of voltage stability, which can overcome the rule-of-thumb basis of existing multi-infeed short circuit ratio (MISCR) concept. In gSCR, two indices, the critical gSCR (CgSCR) and the boundary gSCR (BgSCR) are developed to quantitatively evaluate if the connected AC system is strong or weak, in which CgSCR=2 and BgSCR=3 are two critical values for strength evaluation. Finally, numerical simulations are conducted to validate the effectiveness of the proposed gSCR concept.
204 - Huanhai Xin , Ziheng Li , Wei Dong 2017
The output impedance matrix of a grid-connected converter plays an important role in analyzing system stability. Due to the dynamics of the DC-link control and the phase locked loop (PLL), the output impedance matrices of the converter and grid are difficult to be diagonally decoupled simultaneously, neither in the dq domain nor in the phase domain. It weakens the effectiveness of impedance-based stability criterion (ISC) in system oscillation analysis. To this end, this paper innovatively proposes the generalized-impedance based stability criterion (GISC) to reduce the dimension of the transfer function matrix and simplify system small-signal stability analysis. Firstly, the impedances of the converter and the grid in polar coordinates are formulated, and the concept of generalized-impedance of the converter and the grid is put forward. Secondly, through strict mathematical derivation, the equation that implies the dynamic interaction between the converter and the grid is then extracted from the characteristic equation of the grid-connected converter system. Using the proposed method, the small-signal instability of system can be interpreted as the resonance of the generalized-impedances of the converter and the grid. Besides, the GISC is equivalent to ISC when the dynamics of the outer-loop control and PLL are not considered. Finally, the effectiveness of the proposed method is further verified using the MATLAB based digital simulation and RT-LAB based hardware-in-the-loop (HIL) simulation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا