Do you want to publish a course? Click here

Design of Decoupling and Nonlinear PD Controller for Cruise Control of a Quadrotor

58   0   0.0 ( 0 )
 Added by Rusdhianto Effendi
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Quadrotor is often used to accomplish various missions related to surveillance, territory mapping, search and rescue, and other purposes. Quadrotor is a nonlinear system with multiple input multiple output and has stability issue due to external disturbance. These characteristics lead to difficulty in cruise control of quadrotor automatically. Decoupling method is used to eliminate the interaction of other control on rotational motion, then the roll, pitch, and yaw angle can be controlled independently. Nonlinear PD controller is obtained from invers model of control signal on a quad rotor and it is used to control the translational motion in x and y axis with nonlinear dynamics because of the influence the rotational angle. Simulation results show that the proposed method can eliminate the control interaction of roll, pitch and yaw angle, hence it works like single input single output system and translational motion on x andy axis can achieve the expected trajectory precisely.



rate research

Read More

With quadrotor use seeing extensive growth in recent years, the autonomous control of these Unmanned Aerial Vehicles (UAVs) is an increasing relevant and intersting field. In this paper a linear state-space approach at designing a stable hover controller in the presence of disturbances is presented along with simulation of control system performance. Additionally the design of a tracking system, for linear inertial position and yaw, is presented with simulation results. The gain matrix developed for this control system is independent of the specific quadrotor parameters, meaning that this same gain matrix can be used on a wide variety of quadrotors without modification. The hover and tracking controllers designed in this paper proved to perform well in simulation under perturbation disturbances and normally distributed disturbances on the UAVs linear speeds and angular speeds.
The topic of this paper is to use an intuitive model-based approach to design a networked controller for a recent benchmark scenario. The benchmark problem is to remotely control a two-wheeled inverted pendulum robot via W-LAN communication. The robot has to keep a vertical upright position. Incorporating wireless communication in the control loop introduces multiple uncertainties and affects system performance and stability. The proposed networked control scheme employs model predictive techniques and deliberately extends delays in order to make them constant and deterministic. The performance of the resulting networked control system is evaluated experimentally with a predefined benchmarking experiment and is compared to local control involving no delays.
Vehicle-to-vehicle communications can be unreliable as interference causes communication failures. Thereby, the information flow topology for a platoon of Connected Autonomous Vehicles (CAVs) can vary dynamically. This limits existing Cooperative Adaptive Cruise Control (CACC) strategies as most of them assume a fixed information flow topology (IFT). To address this problem, we introduce a CACC design that considers a dynamic information flow topology (CACC-DIFT) for CAV platoons. An adaptive Proportional-Derivative (PD) controller under a two-predecessor-following IFT is proposed to reduce the negative effects when communication failures occur. The PD controller parameters are determined to ensure the string stability of the platoon. Further, the designed controller also factors the performance of individual vehicles. Hence, when communication failure occurs, the system will switch to a certain type of CACC instead of degenerating to adaptive cruise control, which improves the control performance considerably. The effectiveness of the proposed CACC-DIFT is validated through numerical experiments based on NGSIM field data. Results indicate that the proposed CACC-DIFT design outperforms a CACC with a predetermined information flow topology.
177 - Hao Zhou , Anye Zhou , Tienan Li 2021
Current commercial adaptive cruise control (ACC) systems consist of an upper-level planner controller that decides the optimal trajectory that should be followed, and a low-level controller in charge of sending the gas/brake signals to the mechanical system to actually move the vehicle. We find that the low-level controller has a significant impact on the string stability (SS) even if the planner is string stable: (i) a slow controller deteriorates the SS, (ii) slow controllers are common as they arise from insufficient control gains, from a weak gas/brake system or both, and (iii) the integral term in a slow controller causes undesired overshooting which affects the SS. Accordingly, we suggest tuning up the proportional/feedforward gain and ensuring the gas/brake is not weak. The study results are validated both numerically and empirically with data from commercial cars.
The paper evaluates the influence of the maximum vehicle acceleration and variable proportions of ACC/CACC vehicles on the throughput of an intersection. Two cases are studied: (1) free road downstream of the intersection; and (2) red light at some distance downstream of the intersection. Simulation of a 4-mile stretch of an arterial with 13 signalized intersections is used to evaluate the impact of (C)ACC vehicles on the mean and standard deviation of travel time as the proportion of (C)ACC vehicles is increased. The results suggest a very high urban mobility benefit of (C)ACC vehicles at little or no cost in infrastructure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا