Do you want to publish a course? Click here

Signature of pseudo-diffusive transport in mesoscopic topological insulators

67   0   0.0 ( 0 )
 Added by Saurav Islam Mr
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the unique features of Dirac Fermions is pseudo-diffusive transport by evanescent modes at low Fermi energies when the disorder is low. At higher Fermi energies i.e. carrier densities, the electrical transport is diffusive in nature and the propagation occurs via plane-waves. In this study, we report the detection of such evanescent modes in the surface states of topological insulator through 1/f noise. While signatures of pseudo-diffusive transport have been seen experimentally in graphene, such behavior is yet to be observed explicitly in any other system with a Dirac dispersion. To probe this, we have studied 1/f noise in topological insulators as a function of gate-voltage, and temperature. Our results show a non-monotonic behavior in 1=f noise as the Fermi energy is varied, suggesting a crossover from pseudo-diffusive to diffusive transport regime in mesoscopic topological insulators. The temperature dependence of noise points towards conductance fluctuations from quantum interference as the dominant source of the noise in these samples.



rate research

Read More

Topological states of matter have attracted a lot of attention due to their many intriguing transport properties. In particular, two-dimensional topological insulators (2D TI) possess gapless counter propagating conducting edge channels, with opposite spin, that are topologically protected from backscattering. Two basic features are supposed to confirm the existence of the ballistic edge channels in the submicrometer limit: the 4-terminal conductance is expected to be quantized at the universal value $2e^{2}/h$, and a nonlocal signal should appear due to a net current along the sample edge, carried by the helical states. On the other hand for longer channels the conductance has been found to deviate from the quantized value. This article reviewer the experimental and theoretical work related to the transport in two-dimensional topological insulators (2D-TI), based on HgTe quantum wells in zero magnetic field. We provide an overview of the basic mechanisms predicting a deviation from the quantized transport due to backscattering (accompanied by spin-flips) between the helical channels. We discuss the details of the model, which takes into account the edge and bulk contribution to the total current and reproduces the experimental results.
The particle wave duality sets a fundamental correspondence between optics and quantum mechanics. Within this framework, the propagation of quasiparticles can give rise to superposition phenomena which, like for electromagnetic waves, can be described by the Huygens principle. However, the utilization of this principle by means of propagation and manipulation of quantum information is limited by the required coherence in time and space. Here we show that in topological insulators, which in their pristine form are characterized by opposite propagation directions for the two quasiparticles spin channels, mesoscopic focusing of coherent charge density oscillations can be obtained at large nested segments of constant energy contours by magnetic surface doping. Our findings provide evidence of strongly anisotropic Dirac fermion-mediated interactions. Even more remarkably, the validity of our findings goes beyond topological insulators but applies for systems with spin orbit lifted degeneracy in general. It demonstrates how spin information can be transmitted over long distances, allowing the design of experiments and devices based on coherent quantum effects in this fascinating class of materials.
Quantum conductance fluctuations are investigated in disordered 3D topological insulator quantum wires. Both experiments and theory reveal a new transport regime in a mesoscopic conductor, pseudo-ballistic transport, for which ballistic properties persist beyond the transport mean free path, characteristic of diffusive transport. It results in non-universal conductance fluctuations due to quasi-1D surface modes, as observed in long and narrow Bi$_2$Se$_3$ nanoribbons. Spin helical Dirac fermions in quantum wires retain pseudo-ballistic properties over an unusually broad energy range, due to strong quantum confinement and weak momentum scattering.
The discovery of topologically protected boundary states in topological insulators opens a new avenue toward exploring novel transport phenomena. The one-way feature of boundary states against disorders and impurities prospects great potential in applications of electronic and classical wave devices. Particularly, for the 3D higher-order topological insulators, it can host hinge states, which allow the energy to transport along the hinge channels. However, the hinge states haveonly been observed along a single hinge, and a natural question arises: whether the hinge states can exist simultaneously on all the three independent directions of one sample? Here we theoretically predict and experimentally observe the hinge states on three different directions of a higher-order topological phononic crystal, and demonstrate their robust one-way transport from hinge to hinge. Therefore, 3D topological hinge transport is successfully achieved. The novel sound transport may serve as the basis for acoustic devices of unconventional functions.
187 - M. Houzet , M. A. Skvortsov 2007
We study mesoscopic fluctuations and weak localization correction to the supercurrent in Josephson junctions with coherent diffusive electron dynamics in the normal part. Two kinds of junctions are considered: a chaotic dot coupled to superconductors by tunnel barriers and a diffusive junction with transparent normal--superconducting interfaces. The amplitude of current fluctuations and the weak localization correction to the average current are calculated as functions of the ratio between the superconducting gap and the electron dwell energy, temperature, and superconducting phase difference across the junction. Technically, fluctuations on top of the spatially inhomogeneous proximity effect in the normal region are described by the replicated version of the sigma-model. For the case of diffusive junctions with transparent interfaces, the magnitude of mesoscopic fluctuations of the critical current appears to be nearly 3 times larger than the prediction of the previous theory which did not take the proximity effect into account.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا