Do you want to publish a course? Click here

Keyframing the Future: Keyframe Discovery for Visual Prediction and Planning

95   0   0.0 ( 0 )
 Added by Oleh Rybkin
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Temporal observations such as videos contain essential information about the dynamics of the underlying scene, but they are often interleaved with inessential, predictable details. One way of dealing with this problem is by focusing on the most informative moments in a sequence. We propose a model that learns to discover these important events and the times when they occur and uses them to represent the full sequence. We do so using a hierarchical Keyframe-Inpainter (KeyIn) model that first generates a videos keyframes and then inpaints the rest by generating the frames at the intervening times. We propose a fully differentiable formulation to efficiently learn this procedure. We show that KeyIn finds informative keyframes in several datasets with different dynamics and visual properties. KeyIn outperforms other recent hierarchical predictive models for planning. For more details, please see the project website at url{https://sites.google.com/view/keyin}.



rate research

Read More

When humans observe a physical system, they can easily locate objects, understand their interactions, and anticipate future behavior, even in settings with complicated and previously unseen interactions. For computers, however, learning such models from videos in an unsupervised fashion is an unsolved research problem. In this paper, we present STOVE, a novel state-space model for videos, which explicitly reasons about objects and their positions, velocities, and interactions. It is constructed by combining an image model and a dynamics model in compositional manner and improves on previous work by reusing the dynamics model for inference, accelerating and regularizing training. STOVE predicts videos with convincing physical behavior over hundreds of timesteps, outperforms previous unsupervised models, and even approaches the performance of supervised baselines. We further demonstrate the strength of our model as a simulator for sample efficient model-based control in a task with heavily interacting objects.
Imitation learning trains control policies by mimicking pre-recorded expert demonstrations. In partially observable settings, imitation policies must rely on observation histories, but many seemingly paradoxical results show better performance for policies that only access the most recent observation. Recent solutions ranging from causal graph learning to deep information bottlenecks have shown promising results, but failed to scale to realistic settings such as visual imitation. We propose a solution that outperforms these prior approaches by upweighting demonstration keyframes corresponding to expert action changepoints. This simple approach easily scales to complex visual imitation settings. Our experimental results demonstrate consistent performance improvements over all baselines on image-based Gym MuJoCo continuous control tasks. Finally, on the CARLA photorealistic vision-based urban driving simulator, we resolve a long-standing issue in behavioral cloning for driving by demonstrating effective imitation from observation histories. Supplementary materials and code at: url{https://tinyurl.com/imitation-keyframes}.
In many vision-based reinforcement learning (RL) problems, the agent controls a movable object in its visual field, e.g., the players avatar in video games and the robotic arm in visual grasping and manipulation. Leveraging action-conditioned video prediction, we propose an end-to-end learning framework to disentangle the controllable object from the observation signal. The disentangled representation is shown to be useful for RL as additional observation channels to the agent. Experiments on a set of Atari games with the popular Double DQN algorithm demonstrate improved sample efficiency and game performance (from 222.8% to 261.4% measured in normalized game scores, with prediction bonus reward).
Yarbus claim to decode the observers task from eye movements has received mixed reactions. In this paper, we have supported the hypothesis that it is possible to decode the task. We conducted an exploratory analysis on the dataset by projecting features and data points into a scatter plot to visualize the nuance properties for each task. Following this analysis, we eliminated highly correlated features before training an SVM and Ada Boosting classifier to predict the tasks from this filtered eye movements data. We achieve an accuracy of 95.4% on this task classification problem and hence, support the hypothesis that task classification is possible from a users eye movement data.
In this paper, we present LookOut, a novel autonomy system that perceives the environment, predicts a diverse set of futures of how the scene might unroll and estimates the trajectory of the SDV by optimizing a set of contingency plans over these future realizations. In particular, we learn a diverse joint distribution over multi-agent future trajectories in a traffic scene that covers a wide range of future modes with high sample efficiency while leveraging the expressive power of generative models. Unlike previous work in diverse motion forecasting, our diversity objective explicitly rewards sampling future scenarios that require distinct reactions from the self-driving vehicle for improved safety. Our contingency planner then finds comfortable and non-conservative trajectories that ensure safe reactions to a wide range of future scenarios. Through extensive evaluations, we show that our model demonstrates significantly more diverse and sample-efficient motion forecasting in a large-scale self-driving dataset as well as safer and less-conservative motion plans in long-term closed-loop simulations when compared to current state-of-the-art models.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا