Do you want to publish a course? Click here

Structured Object-Aware Physics Prediction for Video Modeling and Planning

102   0   0.0 ( 0 )
 Added by Jannik Kossen
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

When humans observe a physical system, they can easily locate objects, understand their interactions, and anticipate future behavior, even in settings with complicated and previously unseen interactions. For computers, however, learning such models from videos in an unsupervised fashion is an unsolved research problem. In this paper, we present STOVE, a novel state-space model for videos, which explicitly reasons about objects and their positions, velocities, and interactions. It is constructed by combining an image model and a dynamics model in compositional manner and improves on previous work by reusing the dynamics model for inference, accelerating and regularizing training. STOVE predicts videos with convincing physical behavior over hundreds of timesteps, outperforms previous unsupervised models, and even approaches the performance of supervised baselines. We further demonstrate the strength of our model as a simulator for sample efficient model-based control in a task with heavily interacting objects.



rate research

Read More

In many vision-based reinforcement learning (RL) problems, the agent controls a movable object in its visual field, e.g., the players avatar in video games and the robotic arm in visual grasping and manipulation. Leveraging action-conditioned video prediction, we propose an end-to-end learning framework to disentangle the controllable object from the observation signal. The disentangled representation is shown to be useful for RL as additional observation channels to the agent. Experiments on a set of Atari games with the popular Double DQN algorithm demonstrate improved sample efficiency and game performance (from 222.8% to 261.4% measured in normalized game scores, with prediction bonus reward).
Constraint-based learning reduces the burden of collecting labels by having users specify general properties of structured outputs, such as constraints imposed by physical laws. We propose a novel framework for simultaneously learning these constraints and using them for supervision, bypassing the difficulty of using domain expertise to manually specify constraints. Learning requires a black-box simulator of structured outputs, which generates valid labels, but need not model their corresponding inputs or the input-label relationship. At training time, we constrain the model to produce outputs that cannot be distinguished from simulated labels by adversarial training. Providing our framework with a small number of labeled inputs gives rise to a new semi-supervised structured prediction model; we evaluate this model on multiple tasks --- tracking, pose estimation and time series prediction --- and find that it achieves high accuracy with only a small number of labeled inputs. In some cases, no labels are required at all.
Temporal observations such as videos contain essential information about the dynamics of the underlying scene, but they are often interleaved with inessential, predictable details. One way of dealing with this problem is by focusing on the most informative moments in a sequence. We propose a model that learns to discover these important events and the times when they occur and uses them to represent the full sequence. We do so using a hierarchical Keyframe-Inpainter (KeyIn) model that first generates a videos keyframes and then inpaints the rest by generating the frames at the intervening times. We propose a fully differentiable formulation to efficiently learn this procedure. We show that KeyIn finds informative keyframes in several datasets with different dynamics and visual properties. KeyIn outperforms other recent hierarchical predictive models for planning. For more details, please see the project website at url{https://sites.google.com/view/keyin}.
Restricted Boltzmann machines~(RBMs) and conditional RBMs~(CRBMs) are popular models for a wide range of applications. In previous work, learning on such models has been dominated by contrastive divergence~(CD) and its variants. Belief propagation~(BP) algorithms are believed to be slow for structured prediction on conditional RBMs~(e.g., Mnih et al. [2011]), and not as good as CD when applied in learning~(e.g., Larochelle et al. [2012]). In this work, we present a matrix-based implementation of belief propagation algorithms on CRBMs, which is easily scalable to tens of thousands of visible and hidden units. We demonstrate that, in both maximum likelihood and max-margin learning, training conditional RBMs with BP as the inference routine can provide significantly better results than current state-of-the-art CD methods on structured prediction problems. We also include practical guidelines on training CRBMs with BP, and some insights on the interaction of learning and inference algorithms for CRBMs.
Background: Floods are the most common natural disaster in the world, affecting the lives of hundreds of millions. Flood forecasting is therefore a vitally important endeavor, typically achieved using physical water flow simulations, which rely on accurate terrain elevation maps. However, such simulations, based on solving partial differential equations, are computationally prohibitive on a large scale. This scalability issue is commonly alleviated using a coarse grid representation of the elevation map, though this representation may distort crucial terrain details, leading to significant inaccuracies in the simulation. Contributions: We train a deep neural network to perform physics-informed downsampling of the terrain map: we optimize the coarse grid representation of the terrain maps, so that the flood prediction will match the fine grid solution. For the learning process to succeed, we configure a dataset specifically for this task. We demonstrate that with this method, it is possible to achieve a significant reduction in computational cost, while maintaining an accurate solution. A reference implementation accompanies the paper as well as documentation and code for dataset reproduction.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا