We provide an explicit Lagrangian construction for the massless infinite spin N=1 supermultiplet in four dimensional Minkowski space. Such a supermultiplet contains a pair of massless bosonic and a pair of massless fermionic infinite spin fields with properly adjusted dimensionful parameters. We begin with the gauge invariant Lagrangians for such massless infinite spin bosonic and fermionic fields and derive the supertransformations which leave the sum of their Lagrangians invariant. It is shown that the algebra of these supertransformations is closed on-shell.
We give an explicit component Lagrangian construction of massive higher spin on-shell $N=1$ supermultiplets in four-dimensional Anti-de Sitter space $AdS_4$. We use a frame-like gauge invariant description of massive higher spin bosonic and fermionic fields. For the two types of the supermultiplets (with integer and half-integer superspins) each one containing two massive bosonic and two massive fermionic fields we derive the supertransformations leaving the sum of four their free Lagrangians invariant such that the algebra of these supertransformations is closed on-shell.
We derive the component Lagrangian for the free $N$-extended on-shell massless higher spin supermultiplets in four-dimensional anti-de Sitter space. The construction is based on frame-like description of massless integer and half-integer higher spin fields. The massless supermultiplets are formulated for $Nleq 4k,$ where $k$ is a maximal integer or half-integer spin in the multiplet. The supertransformations that leave the Lagrangian invariant are found and it is shown that their algebra is closed on-shell.
We formulate a unimodular N=1, d=4 supergravity theory off shell. We see that the infinitesimal Grassmann parameters defining the unimodular supergravity transformations are constrained and show that the conmutator of two infinitesinal unimodular supergravity transformations closes on transverse diffeomorphisms, Lorentz transformations and unimodular supergravity transformations. Along the way, we also show that the linearized theory is a supersymmetric theory of gravitons and gravitinos. We see that de Sitter and anti-de Sitter spacetimes are non-supersymmetric vacua of our unimodular supergravity theory.
We propose that a certain $4d$ $mathcal{N}=1$ $SU(2)times SU(2)$ gauge theory flows in the IR to an $mathcal{N}=3$ SCFT plus a single free chiral field. The specific $mathcal{N}=3$ SCFT has rank $1$ and a dimension three Coulomb branch operator. The flow is generically expected to land at the $mathcal{N}=3$ SCFT deformed by the marginal deformation associated with said Coulomb branch operator. We also present a discussion about the properties expected of various RG invariant quantities from $mathcal{N}=3$ superconformal symmetry, and use these to test our proposal. Finally, we discuss a generalization to another $mathcal{N}=1$ model that we propose is related to a certain rank $3$ $mathcal{N}=3$ SCFT through the turning of certain marginal deformations.
We analyse the geometry of four-dimensional bosonic manifolds arising within the context of $N=4, D=1$ supersymmetry. We demonstrate that both cases of general hyper-Kahler manifolds, i.e. those with translation or rotational isometries, may be supersymmetrized in the same way. We start from a generic N=4 supersymmetric three-dimensional action and perform dualization of the coupling constant, initially present in the action. As a result, we end up with explicit component actions for $N=4, D=1$ nonlinear sigma-models with hyper-Kahler geometry (with both types of isometries) in the target space. In the case of hyper-Kahler geometry with translational isometry we find that the action possesses an additional hidden N=4 supersymmetry, and therefore it is N=8 supersymmetric one.
I. L. Buchbinder
,M. V. Khabarov
,T. V. Snegirev
.
(2019)
.
"Lagrangian formulation for the infinite spin N=1 supermultiplets in d=4"
.
Timofey Snegirev
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا