We derive the component Lagrangian for the free $N$-extended on-shell massless higher spin supermultiplets in four-dimensional anti-de Sitter space. The construction is based on frame-like description of massless integer and half-integer higher spin fields. The massless supermultiplets are formulated for $Nleq 4k,$ where $k$ is a maximal integer or half-integer spin in the multiplet. The supertransformations that leave the Lagrangian invariant are found and it is shown that their algebra is closed on-shell.
We give an explicit component Lagrangian construction of massive higher spin on-shell $N=1$ supermultiplets in four-dimensional Anti-de Sitter space $AdS_4$. We use a frame-like gauge invariant description of massive higher spin bosonic and fermionic fields. For the two types of the supermultiplets (with integer and half-integer superspins) each one containing two massive bosonic and two massive fermionic fields we derive the supertransformations leaving the sum of four their free Lagrangians invariant such that the algebra of these supertransformations is closed on-shell.
We give an explicit superspace construction of higher spin conserved supercurrents built out of $4D,mathcal{N}=1$ massless supermultiplets of arbitrary spin. These supercurrents are gauge invariant and generate a large class of cubic interactions between a massless supermultiplet with superspin $Y_1=s_1+1/2$ and two massless supermultiplets of arbitrary superspin $Y_2$. These interactions are possible only for $s_1geq 2Y_2$. At the equality, the supercurrent acquires its simplest form and defines the supersymmetric, higher spin extension of the linearized Bel-Robinson tensor.
In this short note we present a Lagrangian formulation for free bosonic Higher Spin fields which belong to massless reducible representations of D-dimensional Anti de Sitter group using an ambient space formalism.
We provide an explicit Lagrangian construction for the massless infinite spin N=1 supermultiplet in four dimensional Minkowski space. Such a supermultiplet contains a pair of massless bosonic and a pair of massless fermionic infinite spin fields with properly adjusted dimensionful parameters. We begin with the gauge invariant Lagrangians for such massless infinite spin bosonic and fermionic fields and derive the supertransformations which leave the sum of their Lagrangians invariant. It is shown that the algebra of these supertransformations is closed on-shell.
We continue the construction of a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with an arbitrary Young tableaux having $k$ rows, on a basis of the BRST--BFV approach suggested for bosonic fields in our first article (Nucl. Phys. B862 (2012) 270, [arXiv:1110.5044[hep-th]). Starting from a description of fermionic mixed-symmetry higher-spin fields in a flat space of any dimension in terms of an auxiliary Fock space associated with a special Poincare module, we realize a conversion of the initial operator constraint system (constructed with respect to the relations extracting irreducible Poincare-group representations) into a system of first-class constraints. To do this, we find, in first time, by means of generalized Verma module the auxiliary representations of the constraint subsuperalgebra, to be isomorphic due to Howe duality to $osp(k|2k)$ superalgebra, and containing the subsystem of second-class constraints in terms of new oscillator variables. We suggest a universal procedure of finding unconstrained gauge-invariant Lagrangians with reducible gauge symmetries, describing the dynamics of both massless and massive fermionic fields of any spin. It is shown that the space of BRST cohomologies with a vanishing ghost number is determined only by constraints corresponding to an irreducible Poincare-group representation. As examples of the general approach, we propose a method of Lagrangian construction for fermionic fields subject to an arbitrary Young tableaux having 3 rows, and obtain a gauge-invariant Lagrangian for a new model of a massless rank-3 spin-tensor field of spin (5/2,3/2) with first-stage reducible gauge symmetries and a non-gauge Lagrangian for a massive rank-3 spin-tensor field of spin (5/2,3/2).