Do you want to publish a course? Click here

Exclusion of heavy, broad resonances from precise measurements of WZ and VH final states at the LHC

80   0   0.0 ( 0 )
 Added by Stathes D. Paganis
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

A novel search for heavy vector resonances in the $Hrightarrow bbar{b}$ and $Zrightarrow bbar{b}$ final states in association with a leptonically decaying $V$ ($Z$ or $W$) and $W$-only respectively, is proposed. It is argued that excesses with respect to the Standard Model prediction should be observed in all final states (0, 1 or 2 leptons), with the 1-lepton final state being the strongest. Since the relative strengths of these excesses depend on branching ratios and efficiencies, this is a clear signal for the presence of heavy resonances or their low mass tails. A general vector-triplet model is used to explore the discovery potential as a function of the resonance mass and width. Recent Higgs to $bbar{b}$ observation data reported by the experiments ATLAS and CMS are used to test the model. Current limits are extended to resonance widths over mass as large as 9%.

rate research

Read More

In this work, we analyse and demonstrate possible strategies to explore extended Higgs sector of the Minimal Supersymmetric Standard Model (MSSM). In particular we concentrate on heavy Higgs decays to electroweakinos. We analyse the Higgs to electrow eakino decays in the allowed MSSM parameter space after taking into account 13 TeV LHC searches for supersymmetric particles and phenomenological constraints such as flavour physics, Higgs measurements and dark matter constraints. We explore some novel aspects of these Higgs decays. The final states resulting from Higgs to electroweakino decays will have backgrounds arising from the Standard Model as well as direct electroweakino production at the LHC. We demonstrate explicit kinematical differences between Higgs to electroweakino decays and associated backgrounds. Furthermore, we demonstrate for a few specific example points, optimised analysis search strategies at the high luminosity LHC (HL-LHC) run. Finally, we comment on possible search strategies for heavy Higgs decays to exotic final states, where the lightest chargino is long lived and leads to a disappearing track at the LHC.
In the present work we study the production of vector resonances at the LHC by means of the vector boson scattering $WZ to WZ$ and explore the sensitivities to these resonances for the expected future LHC luminosities. We are assuming that these vector resonances are generated dynamically from the self interactions of the longitudinal gauge bosons, $W_L$ and $Z_L$, and work under the framework of the electroweak chiral Lagrangian to describe in a model independent way the supposedly strong dynamics of these modes. The properties of the vector resonances, mass, width and couplings to the $W$ and $Z$ gauge bosons are derived from the inverse amplitude method approach. We implement all these features into a single model, the IAM-MC, adapted for MonteCarlo, built in a Lagrangian language in terms of the electroweak chiral Lagrangian and a chiral Lagrangian for the vector resonances, which mimics the resonant behavior of the IAM and provides unitary amplitudes. The model has been implemented in MadGraph, allowing us to perform a realistic study of the signal versus background events at the LHC. In particular, we have focused our study on the $ppto WZjj$ type of events, discussing first on the potential of the hadronic and semileptonic channels of the final $WZ$, and next exploring in more detail the clearest signals. These are provided by the leptonic decays of the gauge bosons, leading to a final state with $ell_1^+ell_1^-ell_2^+ u jj$, $ell=e,mu$, having a very distinctive signature, and showing clearly the emergence of the resonances with masses in the range of 1.5-2.5 TeV, which we have explored.
The LHC is exploring electroweak (EW) physics at the scale EW symmetry is broken. As the LHC and new high energy colliders push our understanding of the Standard Model to ever-higher energies, it will be possible to probe not only the breaking of but also the restoration of EW symmetry. We propose to observe EW restoration in double EW boson production via the convergence of the Goldstone boson equivalence theorem. This convergence is most easily measured in the vector boson plus Higgs production, $Vh$, which is dominated by the longitudinal polarizations. We define EW restoration by carefully taking the limit of zero Higgs vacuum expectation value (vev). EW restoration is then measured through the ratio of the $p_T^h$ distributions between $Vh$ production in the Standard Model and Goldstone boson plus Higgs production in the zero vev theory, where $p_T^h$ is the Higgs transverse momentum. As EW symmetry is restored, this ratio converges to one at high energy. We present a method to extract this ratio from collider data. With a full signal and background analysis, we demonstrate that the 14 TeV HL-LHC can confirm that this ratio converges to one to 40% precision while at the 27 TeV HE-LHC the precision will be 6%. We also investigate statistical tests to quantify the convergence at high energies. Our analysis provides a roadmap for how to stress test the Goldstone boson equivalence theorem and our understanding of spontaneously broken symmetries, in addition to confirming the restoration of EW symmetry.
We study resonances decaying to one top quark and one additional quark (b or c) at the low- luminosity and high-luminosity 14 TeV LHC and at a future 33 TeV hadron collider in the context of Snowmass 2013. A heavy W boson that preferentially couples to quarks can be found through its decay to tb. A Kaluza-Klein gluon might have a significant branching ratio to tc. The final state in these searches has a lepton and neutrino from a W boson decay plus two jets, at least one of which is b-tagged. We give expected limits as a function of W boson and KKg masses for different collider energy and integrated luminosity options.
The present paper is based on the assumption that heavy quarks bound states exist in the Standard Model (SM). Considering New Bound States (NBS) of top-anti-top quarks (named T-balls) we have shown that: 1) there exists the scalar 1S--bound state of $6t+6bar t$; 2) the forces which bind the top-quarks are very strong and almost completely compensate the mass of the twelve top-anti-top-quarks in the scalar NBS; 3) such strong forces are produced by the Higgs-top-quarks interaction with a large value of the top-quark Yukawa coupling constant $g_tsimeq 1$. Theory also predicts the existence of the NBS $6t + 5bar t$, which is a color triplet and a fermion similar to the $t$-quark of the fourth generation. We have also considered the b-quark-replaced NBS, estimated the masses of the lightest fermionic NBS: $M_{NBS}gtrsim 300$ GeV, and discussed the larger masses of T-balls. We have developed a theory of the scalar T-balls condensate and predicted the existence of three SM phases. Searching for heavy quark bound states at the Tevatron and LHC is discussed. We have constructed the possible form-factors of T-balls, and estimated the charge multiplicity coming from the T-balls decays.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا