No Arabic abstract
In the present work we study the production of vector resonances at the LHC by means of the vector boson scattering $WZ to WZ$ and explore the sensitivities to these resonances for the expected future LHC luminosities. We are assuming that these vector resonances are generated dynamically from the self interactions of the longitudinal gauge bosons, $W_L$ and $Z_L$, and work under the framework of the electroweak chiral Lagrangian to describe in a model independent way the supposedly strong dynamics of these modes. The properties of the vector resonances, mass, width and couplings to the $W$ and $Z$ gauge bosons are derived from the inverse amplitude method approach. We implement all these features into a single model, the IAM-MC, adapted for MonteCarlo, built in a Lagrangian language in terms of the electroweak chiral Lagrangian and a chiral Lagrangian for the vector resonances, which mimics the resonant behavior of the IAM and provides unitary amplitudes. The model has been implemented in MadGraph, allowing us to perform a realistic study of the signal versus background events at the LHC. In particular, we have focused our study on the $ppto WZjj$ type of events, discussing first on the potential of the hadronic and semileptonic channels of the final $WZ$, and next exploring in more detail the clearest signals. These are provided by the leptonic decays of the gauge bosons, leading to a final state with $ell_1^+ell_1^-ell_2^+ u jj$, $ell=e,mu$, having a very distinctive signature, and showing clearly the emergence of the resonances with masses in the range of 1.5-2.5 TeV, which we have explored.
Higgs Effective Field Theory (HEFT) is deployed to study elastic vector-boson scattering at the high LHC energies. The interaction is strong over most of the parameter space, with the minimal Standard Model being a remarkable exception. One-loop HEFT complemented with dispersion relations and the Equivalence Theorem leads to two different unitarization methods which produce analytical amplitudes corresponding to different approximate solutions to the dispersion relations: the Inverse Amplitude method (IAM) and the N/D method. The partial waves obtained can show poles in the second Riemann sheet whose natural interpretation is that of dynamical resonances with masses and widths depending on the starting HEFT parameters. Different unitarizations yield qualitatively, and in many cases quantitatively, very similar results. The amplitudes obtained provide realistic resonant and nonresonant cross sections to be compared with and to be used for a proper interpretation of the LHC data.
We present a study of the production of vector resonances at the LHC via $W^+Z$ vector boson scattering and explore the sensitivities to these resonances for expected LHC luminosities. We work in the framework of the electroweak chiral Lagrangian, where these resonances can be generated dynamically by unitarizing the scattering amplitudes. We implement all these features into a model adapted for MonteCarlo, the IAM-MC, that allows us to give predictions for the sensitivity to these resonances and to the relevant parameters involved for $pp to W^+Zjj$, $ppto ell_1^+ell_1^-ell_2^+ u jj$, and $pp to JJjj$.
We study the production of vector resonances at the LHC via $WZ$ scattering processes and explore the sensitivities to these resonances for the expected future LHC luminosities. The electroweak chiral Lagrangian and the Inverse Amplitude Method (IAM) are used for analyzing a dynamically generated vector resonance, whose origin would be the (hypothetically strong) self interactions of the longitudinal gauge bosons, $W_L$ and $Z_L$. We implement the unitarized scattering amplitudes into a single model, the IAM-MC, that has been adapted to MadGraph~5. It is written in terms of the electroweak chiral Lagrangian and an additional effective Proca Lagrangian for the vector resonances, so that it reproduces the resonant behavior of the IAM and allows us to perform a realistic study of signal versus background at the LHC. We focus on the $ppto WZjj$ channel, discussing first on the potential of the hadronic and semileptonic channels of the final $WZ$, and next exploring in more detail the clearest signals. These are provided by the leptonic decays of the gauge bosons, leading to a final state with $l^+_1l^-_1l^+_2 u jj$, $l=e,mu$, having a very distinctive signature, and showing clearly the emergence of the resonances with masses in the range of $1.5$-$2.5,{rm TeV}$, which we have explored.
The pair production of a $W$ and a $Z$ boson at the LHC is an important process to study the triple-gauge boson couplings as well as to probe new physics that could arise in the gauge sector. In particular the leptonic channel $p p to W^pm Zto 3ell + u + X$ is considered by ATLAS and CMS collaborations. Polarisation observables can help pinning down new physics and give information on the spin of the gauge bosons. Measuring them requires high statistics as well as precise theoretical predictions. We define in this contribution fiducial polarisation observables for the $W$ and $Z$ bosons and we present theoretical predictions in the Standard Model at next-to-leading order (NLO) including QCD as well as NLO electroweak corrections, the latter in the double-pole approximation. We also show that this approximation works remarkably well for $W^pm Z$ production at the LHC by comparing to the full results.
Unitarization models describe phenomenologically the high energy behaviour of a strongly interacting symmetry breaking sector. In this work, predictions of some unitarized models in vector boson scattering at LHC are studied and compared with analogous studies in Equivalent Vector Boson Approximation and previous results for the benchmark no-Higgs scenario. To perform such studies, unitarized model amplitudes have been implemented in the PHANTOM Monte Carlo in a complete calculation with six fermions in the final state.