Do you want to publish a course? Click here

Phonon spectral density in a GaAs/AlGaAs double quantum dot

104   0   0.0 ( 0 )
 Added by Andrea Hofmann
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study phonon emission in a GaAs/AlGaAs double quantum dot by monitoring the tunneling of a single electron between the two dots. We prepare the system such that a known amount of energy is emitted in the transition process. The energy is converted into lattice vibrations and the resulting tunneling rate depends strongly on the phonon scattering and its effective phonon spectral density. We are able to fit the measured transition rates and see imprints of interference of phonons with themselves causing oscillations in the transition rates.

rate research

Read More

We study the Zeeman splitting in lateral quantum dots that are defined in GaAs-AlGaAs het- erostructures by means of split gates. We demonstrate a non-linear dependence of the splitting on magnetic field and its substantial variations from dot to dot and from heterostructure to het- erostructure. These phenomena are important in the context of information processing since the tunability and dot-dependence of the Zeeman splitting allow for a selective manipulation of spins. We show that spin-orbit effects related to the GaAs band structure quantitatively explain the ob- served magnitude of the non-linear dependence of the Zeeman splitting. Furthermore, spin-orbit effects result in a dependence of the Zeeman splitting on predominantly the out-of-plane quantum dot confinement energy. We also show that the variations of the confinement energy due to charge disorder in the heterostructure may explain the dependence of Zeeman splitting on the dot position. This position may be varied by changing the gate voltages which leads to an electrically tunable Zeeman splitting.
131 - X. Fu , Q. Shi , M. A. Zudov 2019
We report on quantum Hall stripes (QHSs) formed in higher Landau levels of GaAs/AlGaAs quantum wells with high carrier density ($n_e > 4 times 10^{11}$ cm$^{-2}$) which is expected to favor QHS orientation along unconventional $left < 1bar{1}0 right >$ crystal axis and along the in-plane magnetic field $B_{||}$. Surprisingly, we find that at $B_{||} = 0$ QHSs in our samples are aligned along $left < 110 right >$ direction and can be reoriented only perpendicular to $B_{||}$. These findings suggest that high density alone is not a decisive factor for either abnormal native QHS orientation or alignment with respect to $B_{||}$, while quantum confinement of the 2DEG likely plays an important role.
The compound semiconductor gallium arsenide (GaAs) provides an ultra-clean platform for storing and manipulating quantum information, encoded in the charge or spin states of electrons confined in nanostructures. The absence of inversion symmetry in the zinc-blende crystal structure of GaAs however, results in strong piezoelectric coupling between lattice acoustic phonons and electrons, a potential hindrance for quantum computing architectures that can be charge-sensitive during certain operations. Here we examine phonon generation in a GaAs double dot, configured as a single- or two-electron charge qubit, and driven by the application of microwaves via surface gates. In a process that is a microwave analog of the Raman effect, stimulated phonon emission is shown to produce population inversion of a two-level system and provides spectroscopic signatures of the phononic environment created by the nanoscale device geometry.
We report a study of transport blockade features in a quantum dot single-electron transistor, based on an undoped AlGaAs/GaAs heterostructure. We observe suppression of transport through the ground state of the dot, as well as negative differential conductance at finite source-drain bias. The temperature and magnetic field dependence of these features indicate the couplings between the leads and the quantum dot states are suppressed. We attribute this to two possible mechanisms: spin effects which determine whether a particular charge transition is allowed based on the change in total spin, and the interference effects that arise from coherent tunneling of electrons in the dot.
102 - H. Kiyama , K. Yoshimi , T. Kato 2021
We report the preparation and readout of multielectron high-spin states, a three-electron quartet, and a four-electron quintet, in a gate-defined GaAs/AlGaAs single quantum dot using spin filtering by quantum Hall edge states coupled to the dot. The readout scheme consists of mapping from multielectron to two-electron spin states and a subsequent two-electron spin readout, thus obviating the need to resolve dense multielectron energy levels. Using this technique, we measure the relaxations of the high-spin states and find them to be an order of magnitude faster than those of low-spin states. Numerical calculations of spin relaxation rates using the exact diagonalization method agree with the experiment. The technique developed here offers a new tool for the study and application of high-spin states in quantum dots.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا