Do you want to publish a course? Click here

Observation of surface wave patterns modified by sub-surface shear currents

342   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report experimental observations of two canonical surface wave patterns --- ship waves and ring waves --- skewed by sub-surface shear, thus confirming effects predicted by recent theory. Observed ring waves on a still surface with sub-surface shear current are strikingly asymmetric, an effect of strongly anisotropic wave dispersion. Ship waves for motion across a sub--surface current on a still surface exhibit striking asymmetry about the ships line of motion, and large differences in wake angle and transverse wavelength for upstream vs downstream motion are demonstrated, all of which in good agreement with theoretical predictions. Neither of these phenomena can occur on a depth-uniform current. A quantitative comparison of measured vs predicted average phase shift for a ring wave is grossly mispredicted by no-shear theory, but in good agreement with predictions for the measured shear current. A clear difference in wave frequency within the ring wave packet is observed in the upstream vs downstream direction for all shear flows, while it conforms with theory for quiescent water for propagation normal to the shear current, as expected. Peak values of the measured 2-dimensional Fourier spectrum for ship waves are shown to agree well with the predicted criterion of stationary ship waves, with the exception of some cases where results are imperfect due to the limited wave-number resolution, transient effects and/or experimental noise. Experiments were performed on controlled shear currents created in two different ways, with a curved mesh, and beneath a blocked stagnant-surface flow. Velocity profiles were measured with particle image velocimetry, and surface waves with a synthetic schlieren method. Our observations lend strong empirical support to recent predictions that wave forces on vessels and structures can be greatly affected by shear in estuarine and tidal waters.



rate research

Read More

We present a theoretical and numerical framework -- which we dub the Direct Integration Method (DIM) -- for simple, efficient and accurate evaluation of surface wave models allowing presence of a current of arbitrary depth dependence, and where bathymetry and ambient currents may vary slowly in horizontal directions. On horizontally constant water depth and shear current the DIM numerically evaluates the dispersion relation of linear surface waves to arbitrary accuracy, and we argue that for this purpose it is superior to two existing numerical procedures: the piecewise-linear approximation and a method due to textit{Dong & Kirby} [2012]. The DIM moreover yields the full linearized flow field at little extra cost. We implement the DIM numerically with iterations of standard numerical methods. The wide applicability of the DIM in an oceanographic setting in four aspects is shown. Firstly, we show how the DIM allows practical implementation of the wave action conservation equation recently derived by textit{Quinn et al.} [2017]. Secondly, we demonstrate how the DIM handles with ease cases where existing methods struggle, i.e. velocity profiles $mathbf{U}(z)$ changing direction with vertical coordinate $z$, and strongly sheared profiles. Thirdly, we use the DIM to calculate and analyse the full linear flow field beneath a 2D ring wave upon a near--surface wind--driven exponential shear current, revealing striking qualitative differences compared to no shear. Finally we demonstrate that the DIM can be a real competitor to analytical dispersion relation approximations such as that of textit{Kirby & Chen} [1989] even for wave/ocean modelling.
The propagation of surface water waves interacting with a current and an uneven bottom is studied. Such a situation is typical for ocean waves where the winds generate currents in the top layer of the ocean. The role of the bottom topography is taken into account since it also influences the local wave and current patterns. Specific scaling of the variables is selected which leads to approximations of Boussinesq and KdV types. The arising KdV equation with variable coefficients, dependent on the bottom topography, is studied numerically when the initial condition is in the form of the one soliton solution for the initial depth. Emergence of new solitons is observed as a result of the wave interaction with the uneven bottom.
We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of depth-varying magnitude using a piecewise linear approximation, and develop a robust numerical framework for practical calculation. The method has been much used in the past for the case of waves propagating along the same axis as the background current, and we herein extend and apply it to problems with an arbitrary angle between the wave propagation and current directions. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving a broad range of wave vectors, such as ship waves and Cauchy-Poisson initial value problems for example. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile, and demonstrate qualitative differences in the wake patterns between concave down and concave up profiles when compared to a constant shear profile with equal depth-averaged vorticity. We also discuss the nature of additional solutions to the dispersion relation when using the piecewise-linear model. These are vorticity waves, drifting vortical structures which are artifacts of the piecewise model. They are absent for a smooth profile and are spurious in the present context.
A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.
We report on progress on the free surface flow in the presence of submerged oscillating line sources (2D) or point sources (3D) when a simple shear flow is present varying linearly with depth. Such sources are in routine use as Green functions in the realm of potential theory for calculating wave-body interactions, but no such theory exists in for rotational flow. We solve the linearized problem in 2D and 3D from first principles, based on the Euler equations, when the sources are at rest relative to the undisturbed surface. Both in 2D and 3D a new type of solution appears compared to irrotational case, a critical layer-like flow whose surface manifestation (wave) drifts downstream from the source at the velocity of the flow at the source depth. We analyse the additional vorticity in light of the vorticity equation and provide a simple physical argument why a critical layer is a necessary consequence of Kelvins circulation theorem. In 3D a related critical layer phenomenon occurs at every depth, whereby a street of counter-rotating vortices in the horizontal plane drift downstream at the local flow velocity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا