Do you want to publish a course? Click here

Extension of the Hertz model for accounting to surface tension in nano-indentation tests of soft materials

67   0   0.0 ( 0 )
 Added by Christophe Fond
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The contact between a spherical indenter and a solid is considered. A numerical finite element model (F. E. M) to taking into account the surface tension of the solid is presented and assessed. It is shown that for nano-indentation of soft materials, the surface tension of the solid influences significantly the reaction force due to indentation. The validity of the classical Hertz model is defined. In very good approximation, the force vs. indentation depth curve can be fitted by a power law function $F=a^delta b$ where $F$ denotes the force acting on the indentor, $d$ the indentation depth, $a$ and $bin ]1,1.5]$ are constants depending on the materials and the size of the indentor.



rate research

Read More

109 - Weike Yuan , Gangfeng Wang 2018
Surface tension is a prominent factor for the deformation of solids at micro-/nano-scale. This paper investigates the effects of surface tension on the two-dimensional contact problems of an elastic layer bonded to the rigid substrate. Under the plane strain assumption, the elastic field induced by a uniformly distributed pressure within a finite width is formulated by applying the Fourier integral transform, and the limiting process leading to the solutions for a line force brings the requisite surface Greens function. For the indentation of an elastic layer by a rigid cylinder, the corresponding singular integral equation is derived, and subsequently solved by using an effective numerical method based on Gauss-Chebyshev quadrature formula. It is found from the theoretical and numerical results that the existence of surface tension strongly enhances the hardness of the elastic layer and significantly affects the distribution of contact pressure, when the size of contact region is comparable to the elastocapillary length. In addition, an approximated relationship between external load and half-width of contact is generalized in an explicit and concise form, which is useful and convenient for practical applications.
53 - Christophe Fond 2019
The classical models of Hertz, Sneddon and Boussinesq provide solutions for problems of indentation of a semi-infinite elastic massif by a sphere, a sphere or a cone and a flat punch. Although these models have been widely tested, it appears that at small scales and for flexible materials, surface tension can contribute to considerably to the mechanical response to indentation. The scales are typically those of the less than one micron for an elastomer and less than one millimetre for a gel. The exploitation of certain experimental results of microscopy or nanoindentation remain approximate due to the absence of models incorporating the effect of surface tension.
109 - D.S. Dean , R.R. Horgan 2003
We carry out the calculation of the surface tension for a model electrolyte to first order in a cumulant expansion about a free field theory equivalent to the Debye-Huckel approximation. In contrast with previous calculations, the surface tension is calculated directly without recourse to integrating thermodynamic relations. The system considered is a monovalent electrolyte with a region at the interface, of width h, from which the ionic species are excluded. In the case where the external dielectric constant epsilon_0 is smaller than the electrolyte solutions dielectric constant epsilon we show that the calculation at this order can be fully regularized. In the case where h is taken to be zero the Onsager-Samaras limiting law for the excess surface tension of dilute electrolyte solutions is recovered, with corrections coming from a non-zero value of epsilon_0/epsilon.
Surface waves play important roles in many fundamental and applied areas from seismic detection to material characterizations. Supershear surface waves with propagation speeds greater than bulk shear waves have recently been reported, but their properties are not well understood. In this Letter, we describe theoretical and experimental results on supershear surface waves in rubbery materials. We find that supershear surface waves can be supported in viscoelastic materials with no restriction on the shear quality factor. Interestingly, the effect of prestress on the speed of the supershear surface wave is opposite to that of the Rayleigh surface wave. Furthermore, anisotropy of material affects the supershear wave much more strongly than the Rayleigh surface wave. We offer heuristic interpretation as well as theoretical verification of our experimental observations. Our work points to the potential applications of supershear waves for characterizing the bulk mechanical properties of soft solid from the free surface.
67 - Dominic Emery , Yibin Fu 2021
We investigate localised bulging or necking in an incompressible, hyperelastic cylindrical tube under axial stretching and surface tension. Three cases are considered in which the tube is subjected to different constraints. In case 1 the inner and outer surfaces are traction-free and under surface tension, whilst in cases 2 and 3 the inner and outer surfaces (respectively) are fixed to prevent radial displacement and surface tension. However, each free surface in these latter two cases is still under surface tension. We first state the analytical bifurcation conditions for localisation and then validate them numerically whilst determining whether localisation is preferred over bifurcation into periodic modes. It is shown that bifurcation into a localised solution is unattainable in case 1 but possible and favourable in cases 2 and 3. In contrast, in case 1 any bifurcation must necessarily take the form of a periodic mode with a non-zero wave number. Our results are validated using Finite Element Method (FEM) simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا