Do you want to publish a course? Click here

Supershear surface waves reveal prestress and anisotropy of soft materials

167   0   0.0 ( 0 )
 Added by Guoyang Li
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Surface waves play important roles in many fundamental and applied areas from seismic detection to material characterizations. Supershear surface waves with propagation speeds greater than bulk shear waves have recently been reported, but their properties are not well understood. In this Letter, we describe theoretical and experimental results on supershear surface waves in rubbery materials. We find that supershear surface waves can be supported in viscoelastic materials with no restriction on the shear quality factor. Interestingly, the effect of prestress on the speed of the supershear surface wave is opposite to that of the Rayleigh surface wave. Furthermore, anisotropy of material affects the supershear wave much more strongly than the Rayleigh surface wave. We offer heuristic interpretation as well as theoretical verification of our experimental observations. Our work points to the potential applications of supershear waves for characterizing the bulk mechanical properties of soft solid from the free surface.



rate research

Read More

Soft electroactive materials can undergo large deformation subjected to either mechanical or electrical stimulus, and hence they can be excellent candidates for designing extremely flexible and adaptive structures and devices. This paper proposes a simple one-dimensional soft phononic crystal cylinder made of dielectric elastomer to show how large deformation and electric field can be used jointly to tune the longitudinal waves propagating in the PC. A series of soft electrodes are placed periodically along the dielectric elastomer cylinder, and hence the material can be regarded as uniform in the undeformed state. This is also the case for the uniformly pre-stretched state induced by a static axial force only. The effective periodicity of the structure is then achieved through two loading paths, i.e. by maintaining the longitudinal stretch and applying an electric voltage over any two neighbouring electrodes, or by holding the axial force and applying the voltage. All physical field variables for both configurations can be determined exactly based on the nonlinear theory of electroelasticity. An infinitesimal wave motion is further superimposed on the pre-deformed configurations and the corresponding dispersion equations are derived analytically by invoking the linearized theory for incremental motions. Numerical examples are finally considered to show the tunability of wave propagation behavior in the soft PC cylinder. The outstanding performance regarding the band gap (BG) property of the proposed soft dielectric PC is clearly demonstrated by comparing with the conventional design adopting the hard piezoelectric material. Note that soft dielectric PCs are susceptible to various kinds of failure (buckling, electromechanical instability, electric breakdown, etc.), imposing corresponding limits on the external stimuli.
The motion of soft-glassy materials (SGM) in a confined geometry is strongly impacted by surface roughness. However, the effect of the spatial distribution of the roughness remains poorly understood from a more quantitative viewpoint. Here we present a comprehensive study of concentrated emulsions flowing in microfluidic channels, one wall of which is patterned with micron-size equally spaced grooves oriented perpendicularly to the flow direction. We show that roughness-induced fluidization can be quantitatively tailored by systematically changing both the width and separation of the grooves. We find that a simple scaling law describes such fluidization as a function of the density of grooves, suggesting common scenarios for droplet trapping and release. Numerical simulations confirm these views and are used to elucidate the relation between fluidization and the rate of plastic rearrangements.
When a block made of an elastomer is subjected to large shear, its surface remains flat. When a block of biological soft tissue is subjected to large shear, it is likely that its surface in the plane of shear will buckle (apparition of wrinkles). One factor that distinguishes soft tissues from rubber-like solids is the presence -- sometimes visible to the naked eye -- of oriented collagen fibre bundles, which are stiffer than the elastin matrix into which they are embedded but are nonetheless flexible and extensible. Here we show that the simplest model of isotropic nonlinear elasticity, namely the incompressible neo-Hookean model, suffers surface instability in shear only at tremendous amounts of shear, i.e., above 3.09, which corresponds to a 72 degrees angle of shear. Next we incorporate a family of parallel fibres in the model and show that the resulting solid can be either reinforced or strongly weakened with respect to surface instability, depending on the angle between the fibres and the direction of shear, and depending on the ratio E/mu between the stiffness of the fibres and that of the matrix. For this ratio we use values compatible with experimental data on soft tissues. Broadly speaking, we find that the surface becomes rapidly unstable when the shear takes place against the fibres, and that as E/mu increases, so does the sector of angles where early instability is expected to occur.
In this paper, we study the effects of both the amount of open cell walls and their aperture sizes on solid foams permeability. FEM flow simulations are performed at both pore and macroscopic scales. For foams with fully interconnected pores, we obtain a robust power-law relationship between permeability and membrane aperture size. This result owns to the local pressure drop mechanism through the membrane aperture as described by Sampson for fluid flow through a circular orifice in a thin plate. Based on this local law, pore-network simulation of simple flow is used and is shown to reproduce successfully FEM results. This low computational cost method allowed to study in detail the effects of the open wall amount on percolation, percolating porosity and permeability. A model of effective permeability is proposed and shows ability to reproduce the results of network simulations. Finally, an experimental validation of the theoretical model on well controlled solid foam is presented.
In vivo measurement of the mechanical properties of thin-walled soft tissues (e.g., mitral valve, artery and bladder) and in situ mechanical characterization of thin-walled artificial soft biomaterials in service are of great challenge and difficult to address via commonly used testing methods. Here we investigate the properties of guided waves generated by focused acoustic radiation force in immersed pre-stressed plates and tubes, and show that they can address this challenge. To this end, we carry out both (i) a theoretical analysis based on incremental wave motion in finite deformation theory and (ii) finite element simulations. Our analysis leads to a novel method based on the ultrasound elastography to image the elastic properties of pre-stressed thin-walled soft tissues and artificial soft materials in a non-destructive and non-invasive manner. To validate the theoretical and numerical solutions and demonstrate the usefulness of the corresponding method in practical measurements, we perform (iii) experiments on polyvinyl alcohol cryogel phantoms immersed in water, using the Verasonics V1 System equipped with a L10-5 transducer. Finally, potential clinical applications of the method have been discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا