Do you want to publish a course? Click here

Localised bifurcation in soft cylindrical tubes under axial stretching and surface tension

68   0   0.0 ( 0 )
 Added by Dominic Emery
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate localised bulging or necking in an incompressible, hyperelastic cylindrical tube under axial stretching and surface tension. Three cases are considered in which the tube is subjected to different constraints. In case 1 the inner and outer surfaces are traction-free and under surface tension, whilst in cases 2 and 3 the inner and outer surfaces (respectively) are fixed to prevent radial displacement and surface tension. However, each free surface in these latter two cases is still under surface tension. We first state the analytical bifurcation conditions for localisation and then validate them numerically whilst determining whether localisation is preferred over bifurcation into periodic modes. It is shown that bifurcation into a localised solution is unattainable in case 1 but possible and favourable in cases 2 and 3. In contrast, in case 1 any bifurcation must necessarily take the form of a periodic mode with a non-zero wave number. Our results are validated using Finite Element Method (FEM) simulations.



rate research

Read More

128 - Dominic Emery , Yibin Fu 2021
We provide an extension to previous analysis of the localised beading instability of soft slender tubes under surface tension and axial stretching. The primary questions pondered here are: under what loading conditions, if any, can bifurcation into circumferential buckling modes occur, and do such solutions dominate localisation and periodic axial modes? Three distinct boundary conditions are considered; in case 1 the tubes curved surfaces are traction free and under surface tension, whilst in cases 2 and 3 the inner and outer surfaces (respectively) are fixed to prevent radial displacement and surface tension. A linear bifurcation analysis is conducted to determine numerically the existence of circumferential mode solutions. In case 1 we focus on the tensile stress regime given the preference of slender compressed tubes towards Euler buckling over axial wrinkling. We show that tubes under several loading paths are highly sensitive to circumferential modes; in contrast, localised and periodic axial modes are absent, suggesting that the circumferential buckling is dominant by default. In case 2, circumferential mode solutions are associated with negative surface tension values and thus are physically implausible. Circumferential buckling solutions are shown to exist in case 3 for tensile and compressive axial loads, and we demonstrate for multiple loading scenarios their dominance over localisation and periodic axial modes within specific parameter regimes.
52 - C.-M. Chen 2001
We report experimental observations of an undulational instability of myelin figures. Motivated by this, we examine theoretically the deformation and possible instability of concentric, cylindrical, multi-lamellar membrane structures. Under conditions of osmotic stress (swelling or dehydration), we find a stable, deformed state in which the layer deformation is given by delta R ~ r^{sqrt{B_A/(hB)}}, where B_A is the area compression modulus, B is the inter-layer compression modulus, and h is the repeat distance of layers. Also, above a finite threshold of dehydration (or osmotic stress), we find that the system becomes unstable to undulations, first with a characteristic wavelength of order sqrt{xi d_0}, where xi is the standard smectic penetration depth and d_0 is the thickness of dehydrated region.
92 - Dominic Emery , Yibin Fu 2021
Previous linear bifurcation analyses have evidenced that an axially stretched soft cylindrical tube may develop an infinite-wavelength (localised) instability when one or both of its lateral surfaces are under sufficient surface tension. Phase transition interpretations have also highlighted that the tube admits a final evolved two-phase state. How the localised instability initiates and evolves into the final two-phase state is still a matter of contention, and this is the focus of the current study. Through a weakly non-linear analysis conducted for a general material model, the initial sub-critical bifurcation solution is found to be localised bulging or necking depending on whether the axial stretch is greater or less than a certain threshold value. At this threshold value, an exceptionally super-critical kink-wave solution arises in place of localisation. A thorough interpretation of the anticipated post-bifurcation behaviour based on our theoretical results is also given, and this is supported by Finite Element Method (FEM) simulations.
78 - Yifan Yang , Hui-Hui Dai , Fan Xu 2018
Instability patterns of rolling up a sleeve appear more intricate than the ones of walking over a rug on floor, both characterized as uniaxially compressed soft-film/stiff-substrate systems. This can be explained by curvature effects. To investigate pattern transitions on a curved surface, we study a soft shell sliding on a rigid cylinder by experiments, computations and theoretical analyses. We reveal a novel post-buckling phenomenon involving multiple successive bifurcations: smooth-wrinkle-ridge-sagging transitions. The shell initially buckles into periodic axisymmetric wrinkles at the threshold and then a wrinkle-to-ridge transition occurs upon further axial compression. When the load increases to the third bifurcation, the amplitude of the ridge reaches its limit and the symmetry is broken with the ridge sagging into a recumbent fold. It is identified that hysteresis loops and the Maxwell equal-energy conditions are associated with the co-existence of wrinkle/ridge or ridge/sagging patterns. Such a bifurcation scheme is inherently general and independent of material constitutive models.
Molecular Dynamics simulations of a coarse-grained bead-spring model of flexible macromolecules tethered with one end to the surface of a cylindrical pore are presented. Chain length $N$ and grafting density $sigma$ are varied over a wide range and the crossover from ``mushroom to ``brush behavior is studied for three pore diameters. The monomer density profile and the distribution of the free chain ends are computed and compared to the corresponding model of polymer brushes at flat substrates. It is found that there exists a regime of $N$ and $sigma$ for large enough pore diameter where the brush height in the pore exceeds the brush height on the flat substrate, while for large enough $N$ and $sigma$ (and small enough pore diameters) the opposite behavior occurs, i.e. the brush is compressed by confinement. These findings are used to discuss the corresponding theories on polymer brushes at concave substrates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا