No Arabic abstract
This paper concerns a time-independent thermoelectric model with two different boundary conditions. The model is a nonlinear coupled system of the Maxwell equations and an elliptic equation. By analyzing carefully the nonlinear structure of the equations, and with the help of the De Giorgi-Nash estimate for elliptic equations, we obtain existence of weak solutions on Lipschitz domains for general boundary data. Using Campanatos method, we establish regularity results of the weak solutions.
We continue the study of a dynamic evolution model for perfectly plastic plates, recently derived from three-dimensional Prandtl-Reuss plasticity. We extend the previous existence result by introducing non-zero external forces in the model, and we discuss the regularity of the solutions thus obtained. In particular, we show that the first derivatives with respect to space of the stress tensor are locally square integrable.
By studying the linearization of contour dynamics equation and using implicit function theorem, we prove the existence of co-rotating and travelling global solutions for the gSQG equation, which extends the result of Hmidi and Mateu cite{HM} to $alphain[1,2)$. Moreover, we prove the $C^infty$ regularity of vortices boundary, and show the convexity of each vortices component.
In this article we prove the global existence of weak solutions for a diffuse interface model in a bounded domain (both in 2D and 3D) involving incompressible magnetic fluids with unmatched densities. The model couples the incompressible Navier-Stokes equations, gradient flow of the magnetization vector and the Cahn-Hilliard dynamics describing the partial mixing of two fluids. The density of the mixture depends on an order parameter and the modelling, specifically the density dependence, is inspired from Abels, Garcke and Gr{u}n 2011.
In this paper, we study the problem of global existence of weak solutions for the quasi-stationary compressible Stokes equations with an anisotropic viscous tensor. The key element of our proof is the control of a particular defect measure associated to the pressure which avoids the use of the eective ux. Using this new tool, we solve an open problem namely global existence of solutions {`a} la Leray for such a system without assuming any restriction on the anisotropy amplitude. It provides a exible and natural way to treat compressible quasilinear Stokes systems which are important for instance in biology, porous media, supra-conductivity or other applications in the low Reynolds number regime.
This paper studies the Sobolev regularity estimates of weak solutions of a class of singular quasi-linear elliptic problems of the form $u_t - mbox{div}[mathbb{A}(x,t,u, abla u)]= mbox{div}[{mathbf F}]$ with homogeneous Dirichlet boundary conditions over bounded spatial domains. Our main focus is on the case that the vector coefficients $mathbb{A}$ are discontinuous and singular in $(x,t)$-variables, and dependent on the solution $u$. Global and interior weighted $W^{1,p}(Omega, omega)$-regularity estimates are established for weak solutions of these equations, where $omega$ is a weight function in some Muckenhoupt class of weights. The results obtained are even new for linear equations, and for $omega =1$, because of the singularity of the coefficients in $(x,t)$-variables