Do you want to publish a course? Click here

Regularity gradient estimates for weak solutions of singular quasi-linear parabolic equations

140   0   0.0 ( 0 )
 Added by Tuoc Phan
 Publication date 2017
  fields
and research's language is English
 Authors Tuoc Phan




Ask ChatGPT about the research

This paper studies the Sobolev regularity estimates of weak solutions of a class of singular quasi-linear elliptic problems of the form $u_t - mbox{div}[mathbb{A}(x,t,u, abla u)]= mbox{div}[{mathbf F}]$ with homogeneous Dirichlet boundary conditions over bounded spatial domains. Our main focus is on the case that the vector coefficients $mathbb{A}$ are discontinuous and singular in $(x,t)$-variables, and dependent on the solution $u$. Global and interior weighted $W^{1,p}(Omega, omega)$-regularity estimates are established for weak solutions of these equations, where $omega$ is a weight function in some Muckenhoupt class of weights. The results obtained are even new for linear equations, and for $omega =1$, because of the singularity of the coefficients in $(x,t)$-variables



rate research

Read More

For a class of singular divergence type quasi-linear parabolic equations with a Radon measure on the right hand side we derive pointwise estimates for solutions via the nonlinear Wolff potentials.
For a general class of divergence type quasi-linear degenerate parabolic equations with differentiable structure and lower order coefficients form bounded with respect to the Laplacian we obtain $L^q$-estimates for the gradients of solutions, and for the lower order coefficients from a Kato-type class we show that the solutions are Lipschitz continuous with respect to the space variable.
For a class of divergence type quasi-linear degenerate parabolic equations with a Radon measure on the right hand side we derive pointwise estimates for solutions via nonlinear Wolff potentials.
We shall establish the interior Holder continuity for locally bounded weak solutions to a class of parabolic singular equations whose prototypes are begin{equation} u_t= abla cdot bigg( | abla u|^{p-2} abla u bigg), quad text{ for } quad 1<p<2, end{equation} and begin{equation} u_{t}- abla cdot ( u^{m-1} | abla u |^{p-2} abla u ) =0 , quad text{for} quad m+p>3-frac{p}{N}, end{equation} via a new and simplified proof using recent techniques on expansion of positivity and $L^{1}$-Harnack estimates.
181 - Hongjie Dong , Tuoc Phan 2018
In this paper, we study parabolic equations in divergence form with coefficients that are singular degenerate as some Muckenhoupt weight functions in one spatial variable. Under certain conditions, weighted reverse H{o}lders inequalities are established. Lipschitz estimates for weak solutions are proved for homogeneous equations with singular degenerate coefficients depending only on one spatial variable. These estimates are then used to establish interior, boundary, and global weighted estimates of Calder{o}n-Zygmund type for weak solutions, assuming that the coefficients are partially VMO (vanishing mean oscillations) with respect to the considered weights. The solvability in weighted Sobolev spaces is also achieved. Our results are new even for elliptic equations, and non-trivially extend known results for uniformly elliptic and parabolic equations. The results are also useful in the study of fractional elliptic and parabolic equations with measurable coefficients.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا