Do you want to publish a course? Click here

Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Computers

101   0   0.0 ( 0 )
 Added by Prakash Murali
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Crosstalk is a major source of noise in Noisy Intermediate-Scale Quantum (NISQ) systems and is a fundamental challenge for hardware design. When multiple instructions are executed in parallel, crosstalk between the instructions can corrupt the quantum state and lead to incorrect program execution. Our goal is to mitigate the application impact of crosstalk noise through software techniques. This requires (i) accurate characterization of hardware crosstalk, and (ii) intelligent instruction scheduling to serialize the affected operations. Since crosstalk characterization is computationally expensive, we develop optimizations which reduce the characterization overhead. On three 20-qubit IBMQ systems, we demonstrate two orders of magnitude reduction in characterization time (compute time on the QC device) compared to all-pairs crosstalk measurements. Informed by these characterization, we develop a scheduler that judiciously serializes high crosstalk instructions balancing the need to mitigate crosstalk and exponential decoherence errors from serialization. On real-system runs on three IBMQ systems, our scheduler improves the error rate of application circuits by up to 5.6x, compared to the IBM instruction scheduler and offers near-optimal crosstalk mitigation in practice. In a broader picture, the difficulty of mitigating crosstalk has recently driven QC vendors to move towards sparser qubit connectivity or disabling nearby operations entirely in hardware, which can be detrimental to performance. Our work makes the case for software mitigation of crosstalk errors.



rate research

Read More

We introduce Mitiq, a Python package for error mitigation on noisy quantum computers. Error mitigation techniques can reduce the impact of noise on near-term quantum computers with minimal overhead in quantum resources by relying on a mixture of quantum sampling and classical post-processing techniques. Mitiq is an extensible toolkit of different error mitigation methods, including zero-noise extrapolation, probabilistic error cancellation, and Clifford data regression. The library is designed to be compatible with generic backends and interfaces with different quantum software frameworks. We describe Mitiq using code snippets to demonstrate usage and discuss features and contribution guidelines. We present several examples demonstrating error mitigation on IBM and Rigetti superconducting quantum processors as well as on noisy simulators.
Trapped ions (TI) are a leading candidate for building Noisy Intermediate-Scale Quantum (NISQ) hardware. TI qubits have fundamental advantages over other technologies such as superconducting qubits, including high qubit quality, coherence and connectivity. However, current TI systems are small in size, with 5-20 qubits and typically use a single trap architecture which has fundamental scalability limitations. To progress towards the next major milestone of 50-100 qubits, a modular architecture termed the Quantum Charge Coupled Device (QCCD) has been proposed. In a QCCD-based TI device, small traps are connected through ion shuttling. While the basic hardware components for such devices have been demonstrated, building a 50-100 qubit system is challenging because of a wide range of design possibilities for trap sizing, communication topology and gate implementations and the need to match diverse application resource requirements. Towards realizing QCCD systems with 50-100 qubits, we perform an extensive architectural study evaluating the key design choices of trap sizing, communication topology and operation implementation methods. We built a design toolflow which takes a QCCD architectures parameters as input, along with a set of applications and realistic hardware performance models. Our toolflow maps the applications onto the target device and simulates their execution to compute metrics such as application run time, reliability and device noise rates. Using six applications and several hardware design points, we show that trap sizing and communication topology choices can impact application reliability by up to three orders of magnitude. Microarchitectural gate implementation choices influence reliability by another order of magnitude. From these studies, we provide concrete recommendations to tune these choices to achieve highly reliable and performant application executions.
181 - Gushu Li , Yufei Ding , Yuan Xie 2019
To bridge the gap between limited hardware access and the huge demand for experiments for Noisy Intermediate-Scale Quantum (NISQ) computing system study, a simulator which can capture the modeling of both the quantum processor and its classical control system to realize early-stage evaluation and design space exploration, is naturally invoked but still missing. This paper presents SANQ, a Simulation framework for Architecting NISQ computing system. SANQ consists of two components, 1) an optimized noisy quantum computing (QC) simulator with flexible error modeling accelerated by eliminating redundant computation, and 2) an architectural simulation infrastructure to construct behavior models for evaluating the control systems. SANQ is validated with existing NISQ quantum processor and control systems to ensure simulation accuracy. It can capture the variance on the QC device and simulate the timing behavior precisely (<1% and 10% error for various real control systems). Several potential applications are proposed to show that SANQ could benefit the future design of NISQ compiler, architecture, etc.
The combination of machine learning and quantum computing has emerged as a promising approach for addressing previously untenable problems. Reservoir computing is an efficient learning paradigm that utilizes nonlinear dynamical systems for temporal information processing, i.e., processing of input sequences to produce output sequences. Here we propose quantum reservoir computing that harnesses complex dissipative quantum dynamics. Our class of quantum reservoirs is universal, in that any nonlinear fading memory map can be approximated arbitrarily closely and uniformly over all inputs by a quantum reservoir from this class. We describe a subclass of the universal class that is readily implementable using quantum gates native to current noisy gate-model quantum computers. Proof-of-principle experiments on remotely accessed cloud-based superconducting quantum computers demonstrate that small and noisy quantum reservoirs can tackle high-order nonlinear temporal tasks. Our theoretical and experimental results pave the path for attractive temporal processing applications of near-term gate-model quantum computers of increasing fidelity but without quantum error correction, signifying the potential of these devices for wider applications including neural modeling, speech recognition and natural language processing, going beyond static classification and regression tasks.
Fault-tolerant quantum computation promises to solve outstanding problems in quantum chemistry within the next decade. Realizing this promise requires scalable tools that allow users to translate descriptions of electronic structure problems to optimized quantum gate sequences executed on physical hardware, without requiring specialized quantum computing knowledge. To this end, we present a quantum chemistry library, under the open-source MIT license, that implements and enables straightforward use of state-of-art quantum simulation algorithms. The library is implemented in Q#, a language designed to express quantum algorithms at scale, and interfaces with NWChem, a leading electronic structure package. We define a standardized schema for this interface, Broombridge, that describes second-quantized Hamiltonians, along with metadata required for effective quantum simulation, such as trial wavefunction ansatzes. This schema is generated for arbitrary molecules by NWChem, conveniently accessible, for instance, through Docker containers and a recently developed web interface EMSL Arrows. We illustrate use of the library with various examples, including ground- and excited-state calculations for LiH, H$_{10}$, and C$_{20}$ with an active-space simplification, and automatically obtain resource estimates for classically intractable examples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا