Do you want to publish a course? Click here

Optimal Combination Forecasts on Retail Multi-Dimensional Sales Data

511   0   0.0 ( 0 )
 Added by Cristina Fernandes
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Time series data in the retail world are particularly rich in terms of dimensionality, and these dimensions can be aggregated in groups or hierarchies. Valuable information is nested in these complex structures, which helps to predict the aggregated time series data. From a portfolio of brands under HUUBs monitoring, we selected two to explore their sales behaviour, leveraging the grouping properties of their product structure. Using statistical models, namely SARIMA, to forecast each level of the hierarchy, an optimal combination approach was used to generate more consistent forecasts in the higher levels. Our results show that the proposed methods can indeed capture nested information in the more granular series, helping to improve the forecast accuracy of the aggregated series. The Weighted Least Squares (WLS) method surpasses all other methods proposed in the study, including the Minimum Trace (MinT) reconciliation.



rate research

Read More

We introduce a formulation of optimal transport problem for distributions on function spaces, where the stochastic map between functional domains can be partially represented in terms of an (infinite-dimensional) Hilbert-Schmidt operator mapping a Hilbert space of functions to another. For numerous machine learning tasks, data can be naturally viewed as samples drawn from spaces of functions, such as curves and surfaces, in high dimensions. Optimal transport for functional data analysis provides a useful framework of treatment for such domains. In this work, we develop an efficient algorithm for finding the stochastic transport map between functional domains and provide theoretical guarantees on the existence, uniqueness, and consistency of our estimate for the Hilbert-Schmidt operator. We validate our method on synthetic datasets and study the geometric properties of the transport map. Experiments on real-world datasets of robot arm trajectories further demonstrate the effectiveness of our method on applications in domain adaptation.
Optimal transport is a machine learning problem with applications including distribution comparison, feature selection, and generative adversarial networks. In this paper, we propose feature-robust optimal transport (FROT) for high-dimensional data, which solves high-dimensional OT problems using feature selection to avoid the curse of dimensionality. Specifically, we find a transport plan with discriminative features. To this end, we formulate the FROT problem as a min--max optimization problem. We then propose a convex formulation of the FROT problem and solve it using a Frank--Wolfe-based optimization algorithm, whereby the subproblem can be efficiently solved using the Sinkhorn algorithm. Since FROT finds the transport plan from selected features, it is robust to noise features. To show the effectiveness of FROT, we propose using the FROT algorithm for the layer selection problem in deep neural networks for semantic correspondence. By conducting synthetic and benchmark experiments, we demonstrate that the proposed method can find a strong correspondence by determining important layers. We show that the FROT algorithm achieves state-of-the-art performance in real-world semantic correspondence datasets.
Multi-omics data, that is, datasets containing different types of high-dimensional molecular variables (often in addition to classical clinical variables), are increasingly generated for the investigation of various diseases. Nevertheless, questions remain regarding the usefulness of multi-omics data for the prediction of disease outcomes such as survival time. It is also unclear which methods are most appropriate to derive such prediction models. We aim to give some answers to these questions by means of a large-scale benchmark study using real data. Different prediction methods from machine learning and statistics were applied on 18 multi-omics cancer datasets from the database The Cancer Genome Atlas, containing from 35 to 1,000 observations and from 60,000 to 100,000 variables. The considered outcome was the (censored) survival time. Twelve methods based on boosting, penalized regression and random forest were compared, comprising both methods that do and that do not take the group structure of the omics variables into account. The Kaplan-Meier estimate and a Cox model using only clinical variables were used as reference methods. The methods were compared using several repetitions of 5-fold cross-validation. Unos C-index and the integrated Brier-score served as performance metrics. The results show that, although multi-omics data can improve the prediction performance, this is not generally the case. Only the method block forest slightly outperformed the Cox model on average over all datasets. Taking into account the multi-omics structure improves the predictive performance and protects variables in low-dimensional groups - especially clinical variables - from not being included in the model. All analyses are reproducible using freely available R code.
Recently proposed consistency-based Semi-Supervised Learning (SSL) methods such as the $Pi$-model, temporal ensembling, the mean teacher, or the virtual adversarial training, have advanced the state of the art in several SSL tasks. These methods can typically reach performances that are comparable to their fully supervised counterparts while using only a fraction of labelled examples. Despite these methodological advances, the understanding of these methods is still relatively limited. In this text, we analyse (variations of) the $Pi$-model in settings where analytically tractable results can be obtained. We establish links with Manifold Tangent Classifiers and demonstrate that the quality of the perturbations is key to obtaining reasonable SSL performances. Importantly, we propose a simple extension of the Hidden Manifold Model that naturally incorporates data-augmentation schemes and offers a framework for understanding and experimenting with SSL methods.
It is important to estimate the local average treatment effect (LATE) when compliance with a treatment assignment is incomplete. The previously proposed methods for LATE estimation required all relevant variables to be jointly observed in a single dataset; however, it is sometimes difficult or even impossible to collect such data in many real-world problems for technical or privacy reasons. We consider a novel problem setting in which LATE, as a function of covariates, is nonparametrically identified from the combination of separately observed datasets. For estimation, we show that the direct least squares method, which was originally developed for estimating the average treatment effect under complete compliance, is applicable to our setting. However, model selection and hyperparameter tuning for the direct least squares estimator can be unstable in practice since it is defined as a solution to the minimax problem. We then propose a weighted least squares estimator that enables simpler model selection by avoiding the minimax objective formulation. Unlike the inverse probability weighted (IPW) estimator, the proposed estimator directly uses the pre-estimated weight without inversion, avoiding the problems caused by the IPW methods. We demonstrate the effectiveness of our method through experiments using synthetic and real-world datasets.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا