We study both noncentrosymmetric and time-reversal breaking Weyl semimetal systems under a strong magnetic field with the Coulomb interaction. The three-dimensional bulk system is reduced to many mutually interacting quasi-one-dimensional wires. Each strongly correlated wire can be approached within the Tomonaga-Luttinger liquid formalism. Including impurity scatterings, we inspect the localization effect and the temperature dependence of the electrical resistivity. The effect of a large number of Weyl points in real materials is also discussed.
In a one-dimensional (1D) system of interacting electrons, excitations of spin and charge travel at different speeds, according to the theory of a Tomonaga-Luttinger Liquid (TLL) at low energies. However, the clear observation of this spin-charge separation is an ongoing challenge experimentally. We have fabricated an electrostatically-gated 1D system in which we observe spin-charge separation and also the predicted power-law suppression of tunnelling into the 1D system. The spin-charge separation persists even beyond the low-energy regime where the TLL approximation should hold. TLL effects should therefore also be important in similar, but shorter, electrostatically gated wires, where interaction effects are being studied extensively worldwide.
The surface of a Weyl semimetal famously hosts an exotic topological metal that contains open Fermi arcs rather than closed Fermi surfaces. In this work, we show that the surface is also endowed with a feature normally associated with strongly interacting systems, namely, Luttinger arcs, defined as zeros of the electron Greens function. The Luttinger arcs connect surface projections of Weyl nodes of opposite chirality and form closed loops with the Fermi arcs when the Weyl nodes are undoped. Upon doping, the ends of the Fermi and Luttinger arcs separate and the intervening regions get filled by surface projections of bulk Fermi surfaces. For bilayered Weyl semimetals, we prove two remarkable implications: (i) the precise shape of the Luttinger arcs can be determined experimentally by removing a surface layer. We use this principle to sketch the Luttinger arcs for Co and Sn terminations in Co$_{3}$Sn$_{2}$S$_{2}$; (ii) the area enclosed by the Fermi and Luttinger arcs equals the surface particle density to zeroth order in the interlayer couplings. We argue that the approximate equivalence survives interactions that are weak enough to leave the system in the Weyl limit, and term this phenomenon weak Luttingers theorem.
Low dimensional quantum magnets are interesting because of the emerging collective behavior arising from strong quantum fluctuations. The one-dimensional (1D) S = 1/2 Heisenberg antiferromagnet is a paradigmatic example, whose low-energy excitations, known as spinons, carry fractional spin S = 1/2. These fractional modes can be reconfined by the application of a staggered magnetic field. Even though considerable progress has been made in the theoretical understanding of such magnets, experimental realizations of this low-dimensional physics are relatively rare. This is particularly true for rare-earth based magnets because of the large effective spin anisotropy induced by the combination of strong spin-orbit coupling and crystal field splitting. Here, we demonstrate that the rare-earth perovskite YbAlO$_3$ provides a realization of a quantum spin S = 1/2 chain material exhibiting both quantum critical Tomonaga-Luttinger liquid behavior and spinon confinement-deconfinement transitions in different regions of magnetic field-temperature phase diagram.
We present NMR measurements of a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder compound (C7H10N)2CuBr4 under magnetic fields up to 15 T in the temperature range from 1.2 K down to 50 mK. From the splitting of NMR lines we determine the phase boundary and the order parameter of the low-temperature (3-dimensional) long-range-ordered phase. In the Tomonaga-Luttinger regime above the ordered phase, NMR relaxation reflects characteristic power-law decay of spin correlation functions as 1/T1 T^(1/2K-1), which allows us to determine the interaction parameter K as a function of field. We find that field-dependent K varies within the 1<K<2 range which signifies attractive interaction between the spinless fermions in the Tomonaga-Luttinger liquid.
Weyl Semimetals (WS) are a new class of Dirac-type materials exhibiting a phase with bulk energy nodes and an associated vanishing density of states (DOS). We investigate the stability of this nodal DOS suppression in the presence of local impurities and consider whether or not such a suppression can be lifted by impurity-induced resonances. We find that while a scalar (chemical potential type) impurity can always induce a resonance at arbitrary energy and hence lift the DOS suppression at Dirac/Weyl nodes, for many other impurity types (e.g. magnetic or orbital-mixing), resonances are forbidden in a wide range of energy. We investigate a $4$-band tight-binding model of WS adapted from a physical heterostructure construction due to Burkov, Hook, and Balents, and represent a local impurity potential by a strength $g$ as well as a matrix structure $Lambda$. A general framework is developed to analyze this resonance dichotomy and make connection with the phase shift picture in scattering theory, as well as to determine the relation between resonance energy and impurity strength $g$. A complete classification of impurities based on $Lambda$, based on their effect on nodal DOS suppression, is tabulated. We also discuss the differences between continuum and lattice approaches.