No Arabic abstract
Interpolators -- estimators that achieve zero training error -- have attracted growing attention in machine learning, mainly because state-of-the art neural networks appear to be models of this type. In this paper, we study minimum $ell_2$ norm (``ridgeless) interpolation in high-dimensional least squares regression. We consider two different models for the feature distribution: a linear model, where the feature vectors $x_i in {mathbb R}^p$ are obtained by applying a linear transform to a vector of i.i.d. entries, $x_i = Sigma^{1/2} z_i$ (with $z_i in {mathbb R}^p$); and a nonlinear model, where the feature vectors are obtained by passing the input through a random one-layer neural network, $x_i = varphi(W z_i)$ (with $z_i in {mathbb R}^d$, $W in {mathbb R}^{p times d}$ a matrix of i.i.d. entries, and $varphi$ an activation function acting componentwise on $W z_i$). We recover -- in a precise quantitative way -- several phenomena that have been observed in large-scale neural networks and kernel machines, including the double descent behavior of the prediction risk, and the potential benefits of overparametrization.
We study the problem of exact support recovery based on noisy observations and present Refined Least Squares (RLS). Given a set of noisy measurement $$ myvec{y} = myvec{X}myvec{theta}^* + myvec{omega},$$ and $myvec{X} in mathbb{R}^{N times D}$ which is a (known) Gaussian matrix and $myvec{omega} in mathbb{R}^N$ is an (unknown) Gaussian noise vector, our goal is to recover the support of the (unknown) sparse vector $myvec{theta}^* in left{-1,0,1right}^D$. To recover the support of the $myvec{theta}^*$ we use an average of multiple least squares solutions, each computed based on a subset of the full set of equations. The support is estimated by identifying the most significant coefficients of the average least squares solution. We demonstrate that in a wide variety of settings our method outperforms state-of-the-art support recovery algorithms.
We show that the high-dimensional behavior of symmetrically penalized least squares with a possibly non-separable, symmetric, convex penalty in both (i) the Gaussian sequence model and (ii) the linear model with uncorrelated Gaussian designs nearly matches the behavior of least squares with an appropriately chosen separable penalty in these same models. The similarity in behavior is precisely quantified by a finite-sample concentration inequality in both cases. Our results help clarify the role non-separability can play in high-dimensional M-estimation. In particular, if the empirical distribution of the coordinates of the parameter is known --exactly or approximately-- there are at most limited advantages to using non-separable, symmetric penalties over separable ones. In contrast, if the empirical distribution of the coordinates of the parameter is unknown, we argue that non-separable, symmetric penalties automatically implement an adaptive procedure which we characterize. We also provide a partial converse which characterizes adaptive procedures which can be implemented in this way.
In model selection, several types of cross-validation are commonly used and many variants have been introduced. While consistency of some of these methods has been proven, their rate of convergence to the oracle is generally still unknown. Until now, an asymptotic analysis of crossvalidation able to answer this question has been lacking. Existing results focus on the pointwise estimation of the risk of a single estimator, whereas analysing model selection requires understanding how the CV risk varies with the model. In this article, we investigate the asymptotics of the CV risk in the neighbourhood of the optimal model, for trigonometric series estimators in density estimation. Asymptotically, simple validation and incomplete V --fold CV behave like the sum of a convex function fn and a symmetrized Brownian changed in time W gn/V. We argue that this is the right asymptotic framework for studying model selection.
We present the first provable Least-Squares Value Iteration (LSVI) algorithms that have runtime complexity sublinear in the number of actions. We formulate the value function estimation procedure in value iteration as an approximate maximum inner product search problem and propose a locality sensitive hashing (LSH) [Indyk and Motwani STOC98, Andoni and Razenshteyn STOC15, Andoni, Laarhoven, Razenshteyn and Waingarten SODA17] type data structure to solve this problem with sublinear time complexity. Moreover, we build the connections between the theory of approximate maximum inner product search and the regret analysis of reinforcement learning. We prove that, with our choice of approximation factor, our Sublinear LSVI algorithms maintain the same regret as the original LSVI algorithms while reducing the runtime complexity to sublinear in the number of actions. To the best of our knowledge, this is the first work that combines LSH with reinforcement learning resulting in provable improvements. We hope that our novel way of combining data-structures and iterative algorithm will open the door for further study into cost reduction in optimization.
Penalization procedures often suffer from their dependence on multiplying factors, whose optimal values are either unknown or hard to estimate from the data. We propose a completely data-driven calibration algorithm for this parameter in the least-squares regression framework, without assuming a particular shape for the penalty. Our algorithm relies on the concept of minimal penalty, recently introduced by Birge and Massart (2007) in the context of penalized least squares for Gaussian homoscedastic regression. On the positive side, the minimal penalty can be evaluated from the data themselves, leading to a data-driven estimation of an optimal penalty which can be used in practice; on the negative side, their approach heavily relies on the homoscedastic Gaussian nature of their stochastic framework. The purpose of this paper is twofold: stating a more general heuristics for designing a data-driven penalty (the slope heuristics) and proving that it works for penalized least-squares regression with a random design, even for heteroscedastic non-Gaussian data. For technical reasons, some exact mathematical results will be proved only for regressogram bin-width selection. This is at least a first step towards further results, since the approach and the method that we use are indeed general.