Do you want to publish a course? Click here

Refined Least Squares for Support Recovery

124   0   0.0 ( 0 )
 Added by Ofir Lindenbaum
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study the problem of exact support recovery based on noisy observations and present Refined Least Squares (RLS). Given a set of noisy measurement $$ myvec{y} = myvec{X}myvec{theta}^* + myvec{omega},$$ and $myvec{X} in mathbb{R}^{N times D}$ which is a (known) Gaussian matrix and $myvec{omega} in mathbb{R}^N$ is an (unknown) Gaussian noise vector, our goal is to recover the support of the (unknown) sparse vector $myvec{theta}^* in left{-1,0,1right}^D$. To recover the support of the $myvec{theta}^*$ we use an average of multiple least squares solutions, each computed based on a subset of the full set of equations. The support is estimated by identifying the most significant coefficients of the average least squares solution. We demonstrate that in a wide variety of settings our method outperforms state-of-the-art support recovery algorithms.



rate research

Read More

292 - Jian Huang , Huiliang Xie 2007
We study the asymptotic properties of the SCAD-penalized least squares estimator in sparse, high-dimensional, linear regression models when the number of covariates may increase with the sample size. We are particularly interested in the use of this estimator for simultaneous variable selection and estimation. We show that under appropriate conditions, the SCAD-penalized least squares estimator is consistent for variable selection and that the estimators of nonzero coefficients have the same asymptotic distribution as they would have if the zero coefficients were known in advance. Simulation studies indicate that this estimator performs well in terms of variable selection and estimation.
In model selection, several types of cross-validation are commonly used and many variants have been introduced. While consistency of some of these methods has been proven, their rate of convergence to the oracle is generally still unknown. Until now, an asymptotic analysis of crossvalidation able to answer this question has been lacking. Existing results focus on the pointwise estimation of the risk of a single estimator, whereas analysing model selection requires understanding how the CV risk varies with the model. In this article, we investigate the asymptotics of the CV risk in the neighbourhood of the optimal model, for trigonometric series estimators in density estimation. Asymptotically, simple validation and incomplete V --fold CV behave like the sum of a convex function fn and a symmetrized Brownian changed in time W gn/V. We argue that this is the right asymptotic framework for studying model selection.
136 - Qiyang Han , Jon A. Wellner 2017
We study the performance of the Least Squares Estimator (LSE) in a general nonparametric regression model, when the errors are independent of the covariates but may only have a $p$-th moment ($pgeq 1$). In such a heavy-tailed regression setting, we show that if the model satisfies a standard `entropy condition with exponent $alpha in (0,2)$, then the $L_2$ loss of the LSE converges at a rate begin{align*} mathcal{O}_{mathbf{P}}big(n^{-frac{1}{2+alpha}} vee n^{-frac{1}{2}+frac{1}{2p}}big). end{align*} Such a rate cannot be improved under the entropy condition alone. This rate quantifies both some positive and negative aspects of the LSE in a heavy-tailed regression setting. On the positive side, as long as the errors have $pgeq 1+2/alpha$ moments, the $L_2$ loss of the LSE converges at the same rate as if the errors are Gaussian. On the negative side, if $p<1+2/alpha$, there are (many) hard models at any entropy level $alpha$ for which the $L_2$ loss of the LSE converges at a strictly slower rate than other robust estimators. The validity of the above rate relies crucially on the independence of the covariates and the errors. In fact, the $L_2$ loss of the LSE can converge arbitrarily slowly when the independence fails. The key technical ingredient is a new multiplier inequality that gives sharp bounds for the `multiplier empirical process associated with the LSE. We further give an application to the sparse linear regression model with heavy-tailed covariates and errors to demonstrate the scope of this new inequality.
We study the parameter estimation problem of Vasicek Model driven by sub-fractional Brownian processes from discrete observations, and let {S_t^H,t>=0} denote a sub-fractional Brownian motion whose Hurst parameter 1/2<H<1 . The studies are as follows: firstly, two unknown parameters in the model are estimated by the least squares method. Secondly, the strong consistency and the asymptotic distribution of the estimators are studied respectively. Finally, our estimators are validated by numerical simulation.
In a regression setting with response vector $mathbf{y} in mathbb{R}^n$ and given regressor vectors $mathbf{x}_1,ldots,mathbf{x}_p in mathbb{R}^n$, a typical question is to what extent $mathbf{y}$ is related to these regressor vectors, specifically, how well can $mathbf{y}$ be approximated by a linear combination of them. Classical methods for this question are based on statistical models for the conditional distribution of $mathbf{y}$, given the regressor vectors $mathbf{x}_j$. Davies and Duembgen (2020) proposed a model-free approach in which all observation vectors $mathbf{y}$ and $mathbf{x}_j$ are viewed as fixed, and the quality of the least squares fit of $mathbf{y}$ is quantified by comparing it with the least squares fit resulting from $p$ independent white noise regressor vectors. The purpose of the present note is to explain in a general context why the model-based and model-free approach yield the same p-values, although the interpretation of the latter is different under the two paradigms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا