Do you want to publish a course? Click here

Approximate separability of symmetrically penalized least squares in high dimensions: characterization and consequences

72   0   0.0 ( 0 )
 Added by Michael Celentano
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We show that the high-dimensional behavior of symmetrically penalized least squares with a possibly non-separable, symmetric, convex penalty in both (i) the Gaussian sequence model and (ii) the linear model with uncorrelated Gaussian designs nearly matches the behavior of least squares with an appropriately chosen separable penalty in these same models. The similarity in behavior is precisely quantified by a finite-sample concentration inequality in both cases. Our results help clarify the role non-separability can play in high-dimensional M-estimation. In particular, if the empirical distribution of the coordinates of the parameter is known --exactly or approximately-- there are at most limited advantages to using non-separable, symmetric penalties over separable ones. In contrast, if the empirical distribution of the coordinates of the parameter is unknown, we argue that non-separable, symmetric penalties automatically implement an adaptive procedure which we characterize. We also provide a partial converse which characterizes adaptive procedures which can be implemented in this way.



rate research

Read More

292 - Jian Huang , Huiliang Xie 2007
We study the asymptotic properties of the SCAD-penalized least squares estimator in sparse, high-dimensional, linear regression models when the number of covariates may increase with the sample size. We are particularly interested in the use of this estimator for simultaneous variable selection and estimation. We show that under appropriate conditions, the SCAD-penalized least squares estimator is consistent for variable selection and that the estimators of nonzero coefficients have the same asymptotic distribution as they would have if the zero coefficients were known in advance. Simulation studies indicate that this estimator performs well in terms of variable selection and estimation.
We study the problem of exact support recovery based on noisy observations and present Refined Least Squares (RLS). Given a set of noisy measurement $$ myvec{y} = myvec{X}myvec{theta}^* + myvec{omega},$$ and $myvec{X} in mathbb{R}^{N times D}$ which is a (known) Gaussian matrix and $myvec{omega} in mathbb{R}^N$ is an (unknown) Gaussian noise vector, our goal is to recover the support of the (unknown) sparse vector $myvec{theta}^* in left{-1,0,1right}^D$. To recover the support of the $myvec{theta}^*$ we use an average of multiple least squares solutions, each computed based on a subset of the full set of equations. The support is estimated by identifying the most significant coefficients of the average least squares solution. We demonstrate that in a wide variety of settings our method outperforms state-of-the-art support recovery algorithms.
In model selection, several types of cross-validation are commonly used and many variants have been introduced. While consistency of some of these methods has been proven, their rate of convergence to the oracle is generally still unknown. Until now, an asymptotic analysis of crossvalidation able to answer this question has been lacking. Existing results focus on the pointwise estimation of the risk of a single estimator, whereas analysing model selection requires understanding how the CV risk varies with the model. In this article, we investigate the asymptotics of the CV risk in the neighbourhood of the optimal model, for trigonometric series estimators in density estimation. Asymptotically, simple validation and incomplete V --fold CV behave like the sum of a convex function fn and a symmetrized Brownian changed in time W gn/V. We argue that this is the right asymptotic framework for studying model selection.
We consider a nonparametric version of the integer-valued GARCH(1,1) model for time series of counts. The link function in the recursion for the variances is not specified by finite-dimensional parameters, but we impose nonparametric smoothness conditions. We propose a least squares estimator for this function and show that it is consistent with a rate that we conjecture to be nearly optimal.
136 - Qiyang Han , Jon A. Wellner 2017
We study the performance of the Least Squares Estimator (LSE) in a general nonparametric regression model, when the errors are independent of the covariates but may only have a $p$-th moment ($pgeq 1$). In such a heavy-tailed regression setting, we show that if the model satisfies a standard `entropy condition with exponent $alpha in (0,2)$, then the $L_2$ loss of the LSE converges at a rate begin{align*} mathcal{O}_{mathbf{P}}big(n^{-frac{1}{2+alpha}} vee n^{-frac{1}{2}+frac{1}{2p}}big). end{align*} Such a rate cannot be improved under the entropy condition alone. This rate quantifies both some positive and negative aspects of the LSE in a heavy-tailed regression setting. On the positive side, as long as the errors have $pgeq 1+2/alpha$ moments, the $L_2$ loss of the LSE converges at the same rate as if the errors are Gaussian. On the negative side, if $p<1+2/alpha$, there are (many) hard models at any entropy level $alpha$ for which the $L_2$ loss of the LSE converges at a strictly slower rate than other robust estimators. The validity of the above rate relies crucially on the independence of the covariates and the errors. In fact, the $L_2$ loss of the LSE can converge arbitrarily slowly when the independence fails. The key technical ingredient is a new multiplier inequality that gives sharp bounds for the `multiplier empirical process associated with the LSE. We further give an application to the sparse linear regression model with heavy-tailed covariates and errors to demonstrate the scope of this new inequality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا