Do you want to publish a course? Click here

The X-ray variable sky as seen by MAXI: the future of dust echo tomography with bright Galactic X-ray bursts

125   0   0.0 ( 0 )
 Added by Lia Corrales
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bright, short duration X-ray flares from accreting compact objects produce thin, dust scattering rings that enable dust echo tomography: high precision distance measurements and mapping of the line-of-sight distribution of dust. This work looks to the past activity of X-ray transient outbursts in order to predict the number of sight lines available for dust echo tomography. We search for and measure the properties of 3$sigma$ significant flares in the 2-4 keV light curves of all objects available in the public MAXI archive. We derive a fluence sensitivity limit of $10^{-3}$ erg cm$^{-2}$ for the techniques used to analyze the light curves. This limits the study mainly to flares from Galactic X-ray sources. We obtain the number density of flares and estimate the total fluence of the corresponding dust echoes. However, the sharpness of a dust echo ring depends on the duration of a flare relative to quiescence. We select flares that are shorter than their corresponding quiescent period to calculate a number density distribution for dust echo rings as a function of fluence. The results are fit with a power law of slope $-2.3 pm 0.1$. Extrapolating this to dimmer flares, we estimate that the next generation of X-ray telescopes will be 30 times more sensitive than current observatories, resulting in 10-30 dust ring echoes per year. The new telescopes will also be 10-100 times more sensitive than Chandra to dust ring echoes from the intergalactic medium.



rate research

Read More

We report nine long X-ray bursts from neutron stars, detected with Monitor of All-sky X-ray Image (MAXI). Some of these bursts lasted for hours, and hence are qualified as superbursts, which are prolonged thermonuclear flashes on neutron stars and are relatively rare events. MAXI observes roughly 85% of the whole sky every 92 minutes in the 2-20 keV energy band, and has detected nine bursts with a long e-folding decay time, ranging from 0.27 to 5.2 hours, since its launch in 2009 August until 2015 August. The majority of the nine events were found to originate from transient X-ray sources. The persistent luminosities of the sources, when these prolonged bursts were observed, were lower than 1% of the Eddington luminosity for five of them and lower than 20% for the rest. This trend is contrastive to the 18 superbursts observed before MAXI, all but two of which originated from bright persistent sources. The distribution of the total emitted energy, i.e., the product of e-folding time and luminosity, of these bursts clusters around $10^{41}$-$10^{42}$ erg, whereas either of the e-folding time and luminosity ranges for an order of magnitude. Among the nine events, two were from 4U 1850-086 during the phases of relatively low persistent-flux, whereas it usually exhibits standard short X-ray bursts during outbursts.
MAXI J1807+132 is a low-mass X-ray binary (LMXB) first detected in outburst in 2017. Observations during the 2017 outburst did not allow for an unambiguous identification of the nature of the compact object. MAXI J1807+132 was detected in outburst again in 2019 and was monitored regularly with NICER. In this paper we report on five days of observations during which we detected three thermonuclear (Type-I) X-ray bursts, identifying the system as a neutron star LMXB. Time-resolved spectroscopy of the three Type-I bursts revealed typical characteristics expected for these phenomena. All three Type-I bursts show slow rises and long decays, indicative of mixed H/He fuel. We find no strong evidence that any of the Type-I bursts reached the Eddington Luminosity; however, under the assumption that the brightest X-ray burst underwent photospheric radius expansion, we estimate a <12.4kpc upper limit for the distance. We searched for burst oscillations during the Type-I bursts from MAXI J1807+132 and found none (<10% amplitude upper limit at 95% confidence level). Finally, we found that the brightest Type-I burst shows a ~1.6sec pause during the rise. This pause is similar to one recently found with NICER in a bright Type-I burst from the accreting millisecond X-ray pulsar SAX J1808.4-3658. The fact that Type-I bursts from both sources can show this type of pause suggests that the origin of the pauses is independent of the composition of the burning fuel, the peak luminosity of the Type-I bursts, or whether the NS is an X-ray pulsar.
We present a statistical analysis of the X-ray flux distribution of Sgr A* from the Chandra X-ray Observatorys 3 Ms Sgr A* X-ray Visionary Project (XVP) in 2012. Our analysis indicates that the observed X-ray flux distribution can be decomposed into a steady quiescent component, represented by a Poisson process with rate $Q=(5.24pm0.08)times10^{-3}$ cts s$^{-1},$ and a variable component, represented by a power law process ($dN/dFpropto F^{-xi},$ $xi=1.92_{-0.02}^{+0.03}$). This slope matches our recently-reported distribution of flare luminosities. The variability may also be described by a log-normal process with a median unabsorbed 2-8 keV flux of $1.8^{+0.9}_{-0.6}times10^{-14}$ erg s$^{-1}$ cm$^{-2}$ and a shape parameter $sigma=2.4pm0.2,$ but the power law provides a superior description of the data. In this decomposition of the flux distribution, all of the intrinsic X-ray variability of Sgr A* (spanning at least three orders of magnitude in flux) can be attributed to flaring activity, likely in the inner accretion flow. We confirm that at the faint end, the variable component contributes ~10% of the apparent quiescent flux, as previously indicated by our statistical analysis of X-ray flares in these Chandra observations. Our flux distribution provides a new and important observational constraint on theoretical models of Sgr A*, and we use simple radiation models to explore the extent to which a statistical comparison of the X-ray and infrared can provide insights into the physics of the X-ray emission mechanism.
NuSTAR observed the bright Compton-thin, narrow line Seyfert 1 galaxy, NGC 5506, for about 56 ks. In agreement with past observations, the spectrum is well fit by a power law with Gamma~1.9, a distant reflection component and narrow ionized iron lines. A relativistically blurred reflection component is not required by the data. When an exponential high energy cutoff is added to the power law, a value of 720(+130,-190) keV (90% confidence level) is found. Even allowing for systematic uncertainties, we find a 3 sigma lower limit to the high-energy cutoff of 350 keV, the highest lower limit to the cutoff energy found so far in an AGN by NuSTAR.
We present the third MAXI/GSC catalog in the high Galactic-latitude sky ($|b| > 10^circ$) based on the 7-year data from 2009 August 13 to 2016 July 31, complementary to that in the low Galactic-latitude sky ($|b| < 10^circ$; Hori et al. 2018). We compile 682 sources detected at significances of $s_{rm D,4-10~keV} geq 6.5$ in the 4--10 keV band. A two-dimensional image fit based on the Poisson likelihood algorithm ($C$-statistics) is adopted for the detections and constraints on their fluxes and positions. The 4--10 keV sensitivity reaches $approx 0.48$ mCrab, or $approx 5.9 times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$, over the half of the survey area. Compared with the 37-month catalog (Hiroi et al. 2013), which adopted a threshold of $s_{rm D,4-10~keV} geq 7$, the source number increases by a factor of $sim$1.4. The fluxes in the 3--4 keV and 10--20 keV bands are further estimated, and hardness ratios (HRs) are calculated using the 3--4 keV, 4--10 keV, 3--10 keV, and 10--20 keV band fluxes. We also make the 4--10 keV lightcurves in one year bins for all the sources and characterize their variabilities with an index based on a likelihood function and the excess variance. Possible counterparts are found from five major X-ray survey catalogs by Swift, Uhuru, RXTE, XMM-Newton, and ROSAT, and an X-ray galaxy-cluster catalog (MCXC). Our catalog provides the fluxes, positions, detection significances, HRs, one-year bin lightcurves, variability indices, and counterpart candidates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا