Do you want to publish a course? Click here

The X-ray Flux Distribution of Sagittarius A* as Seen by Chandra

452   0   0.0 ( 0 )
 Added by Joseph Neilsen
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a statistical analysis of the X-ray flux distribution of Sgr A* from the Chandra X-ray Observatorys 3 Ms Sgr A* X-ray Visionary Project (XVP) in 2012. Our analysis indicates that the observed X-ray flux distribution can be decomposed into a steady quiescent component, represented by a Poisson process with rate $Q=(5.24pm0.08)times10^{-3}$ cts s$^{-1},$ and a variable component, represented by a power law process ($dN/dFpropto F^{-xi},$ $xi=1.92_{-0.02}^{+0.03}$). This slope matches our recently-reported distribution of flare luminosities. The variability may also be described by a log-normal process with a median unabsorbed 2-8 keV flux of $1.8^{+0.9}_{-0.6}times10^{-14}$ erg s$^{-1}$ cm$^{-2}$ and a shape parameter $sigma=2.4pm0.2,$ but the power law provides a superior description of the data. In this decomposition of the flux distribution, all of the intrinsic X-ray variability of Sgr A* (spanning at least three orders of magnitude in flux) can be attributed to flaring activity, likely in the inner accretion flow. We confirm that at the faint end, the variable component contributes ~10% of the apparent quiescent flux, as previously indicated by our statistical analysis of X-ray flares in these Chandra observations. Our flux distribution provides a new and important observational constraint on theoretical models of Sgr A*, and we use simple radiation models to explore the extent to which a statistical comparison of the X-ray and infrared can provide insights into the physics of the X-ray emission mechanism.



rate research

Read More

NuSTAR observed the bright Compton-thin, narrow line Seyfert 1 galaxy, NGC 5506, for about 56 ks. In agreement with past observations, the spectrum is well fit by a power law with Gamma~1.9, a distant reflection component and narrow ionized iron lines. A relativistically blurred reflection component is not required by the data. When an exponential high energy cutoff is added to the power law, a value of 720(+130,-190) keV (90% confidence level) is found. Even allowing for systematic uncertainties, we find a 3 sigma lower limit to the high-energy cutoff of 350 keV, the highest lower limit to the cutoff energy found so far in an AGN by NuSTAR.
213 - Stefan Ohm 2016
Starburst galaxies have a highly increased star-formation rate compared to regular galaxies and inject huge amounts of kinetic power into the interstellar medium via supersonic stellar winds, and supernova explosions. Supernova remnants, which are considered to be the main source of cosmic rays (CRs), form an additional, significant energy and pressure component and might influence the star-formation process in a major way. Observations of starburst galaxies at gamma-ray energies gives us the unique opportunity to study non-thermal phenomena associated with hadronic CRs and their relation to the star-formation process. In this work, recent observations of starburst galaxies with space and ground-based gamma-ray telescopes are being reviewed and the current state of theoretical work on the gamma-ray emission is discussed. A special emphasis is put on the prospects of the next-generation Cherenkov Telescope Array for the study of starburst galaxies in particular and star-forming galaxies in general.
115 - Maica Clavel 2013
The relatively rapid spatial and temporal variability of the X-ray radiation from some molecular clouds near the Galactic center shows that this emission component is due to the reflection of X-rays generated by a source that was luminous in the past, most likely the central supermassive black hole, Sagittarius A*. Studying the evolution of the molecular cloud reflection features is therefore a key element to reconstruct Sgr A*s past activity. The aim of the present work is to study this emission on small angular scales in order to characterize the source outburst on short time scales. We use Chandra high-resolution data collected from 1999 to 2011 to study the most rapid variations detected so far, those of clouds between 5 and 20 from Sgr A* towards positive longitudes. Our systematic spectral-imaging analysis of the reflection emission, notably of the Fe Kalpha line at 6.4 keV and its associated 4-8 keV continuum, allows us to characterize the variations down to 15 angular scale and 1-year time scale. We reveal for the first time abrupt variations of few years only and in particular a short peaked emission, with a factor of 10 increase followed by a comparable decrease, that propagates along the dense filaments of the Bridge cloud. This 2-year peaked feature contrasts with the slower 10-year linear variations we reveal in all the other molecular structures of the region. Based on column density constraints, we argue that these two different behaviors are unlikely to be due to the same illuminating event. The variations are likely due to a highly variable active phase of Sgr A* sometime within the past few hundred years, characterized by at least two luminous outbursts of a few-year time scale and during which the Sgr A* luminosity went up to at least 10^39 erg/s.
Bright, short duration X-ray flares from accreting compact objects produce thin, dust scattering rings that enable dust echo tomography: high precision distance measurements and mapping of the line-of-sight distribution of dust. This work looks to the past activity of X-ray transient outbursts in order to predict the number of sight lines available for dust echo tomography. We search for and measure the properties of 3$sigma$ significant flares in the 2-4 keV light curves of all objects available in the public MAXI archive. We derive a fluence sensitivity limit of $10^{-3}$ erg cm$^{-2}$ for the techniques used to analyze the light curves. This limits the study mainly to flares from Galactic X-ray sources. We obtain the number density of flares and estimate the total fluence of the corresponding dust echoes. However, the sharpness of a dust echo ring depends on the duration of a flare relative to quiescence. We select flares that are shorter than their corresponding quiescent period to calculate a number density distribution for dust echo rings as a function of fluence. The results are fit with a power law of slope $-2.3 pm 0.1$. Extrapolating this to dimmer flares, we estimate that the next generation of X-ray telescopes will be 30 times more sensitive than current observatories, resulting in 10-30 dust ring echoes per year. The new telescopes will also be 10-100 times more sensitive than Chandra to dust ring echoes from the intergalactic medium.
103 - D. J. Walton , C. Pinto , M. Nowak 2019
We present results from the major coordinated X-ray observing program on the ULX NGC 1313 X-1 performed in 2017, combining $XMM$-$Newton$, $Chandra$ and $NuSTAR$, focusing on the evolution of the broadband ($sim$0.3-30.0 keV) continuum emission. Clear and unusual spectral variability is observed, but this is markedly suppressed above $sim$10-15 keV, qualitatively similar to the ULX Holmberg IX X-1. We model the multi-epoch data with two-component accretion disc models designed to approximate super-Eddington accretion, allowing for both a black hole and a neutron star accretor. With regards to the hotter disc component, the data trace out two distinct tracks in the luminosity-temperature plane, with larger emitting radii and lower temperatures seen at higher observed fluxes. Despite this apparent anti-correlation, each of these tracks individually shows a positive luminosity-temperature relation. Both are broadly consistent with $Lpropto{T}^{4}$, as expected for blackbody emission with a constant area, and also with $Lpropto{T}^{2}$, as may be expected for an advection-dominated disc around a black hole. We consider a variety of possibilities for this unusual behaviour. Scenarios in which the innermost flow is suddenly blocked from view by outer regions of the super-Eddington disc/wind can explain the luminosity-temperature behaviour, but are difficult to reconcile with the lack of strong variability at higher energies, assuming this emission arises from the most compact regions. Instead, we may be seeing evidence for further radial stratification of the accretion flow than is included in the simple models considered, with a combination of winds and advection resulting in the suppressed high-energy variability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا